Package: parttree (via r-universe)
March 17, 2025

Title Visualize Simple 2-D Decision Tree Partitions
Version 0.1.0
Date 2025-10-14

Description Visualize the partitions of simple decision trees,
involving one or two predictors, on the scale of the original
data. Provides an intuitive alternative to traditional tree
diagrams, by visualizing how a decision tree divides the
predictor space in a simple 2D plot alongside the original
data. The 'parttree’ package supports both classification and
regression trees from 'rpart’ and 'partykit', as well as trees
produced by popular frontend systems like 'tidymodels' and
'mlr3'. Visualization methods are provided for both base R
graphics and 'ggplot2'.

License MIT + file LICENSE
Encoding UTF-8

Roxygen list(markdown = TRUE)
RoxygenNote 7.3.2

LazyData true

URL https://grantmcdermott.com/parttree/

BugReports https://github.com/grantmcdermott/parttree/issues

Imports graphics, stats, data.table, partykit, rlang, rpart, tinyplot
(>=0.2.0)

Enhances ggplot2 (>=3.4.0)

Suggests tinytest, tinysnapshot (>= 0.0.3), fontquiver, rsvg, svglite,
palmerpenguins, titanic, mlr3, parsnip, workflows, magick,
imager, knitr, rmarkdown

VignetteBuilder knitr

Repository https://grantmedermott.r-universe.dev
RemoteUrl https://github.com/grantmcdermott/parttree
RemoteRef HEAD

RemoteSha c412428a78f0d7647253789f41de83de4c07cbcod

https://grantmcdermott.com/parttree/
https://github.com/grantmcdermott/parttree/issues

2 geom_parttree

Contents
GEOM_PAIITC. o v v v v v e et e e e e e e e e e e e e e e e 2
PaItiree e e 6
plotparttree L. e 8
Index 11
geom_parttree Visualize tree partitions with ggplot2
Description

geom_parttree() is a simple wrapper around parttree() that takes a tree model object and then
converts into an amenable data frame that ggplot2 knows how to plot. Please note that ggplot?2
is not a hard dependency of parttree and must thus be installed separately on the user’s system
before calling geom_parttree.

Usage

geom_parttree(
mapping = NULL,
data = NULL,
stat = "identity"”,
position = "identity",
linejoin = "mitre”,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,

flip = FALSE,
)
Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data An rpart::rpart.object or an object of compatible type (e.g. a decision tree con-
structed via the partykit, tidymodels, or mlr3 front-ends).

stat The statistical transformation to use on the data for this layer. When using a

geom_x* () function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

* A Stat ggproto subclass, for example StatCount.

* A string naming the stat. To give the stat as a string, strip the function name
of the stat_ prefix. For example, to use stat_count(), give the stat as
"count”.

geom_parttree

position

linejoin

na.rm

show. legend

inherit.aes

flip

* For more information and other ways to specify the stat, see the layer stat
documentation.

A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

* For more information and other ways to specify the position, see the layer
position documentation.

Line join style (round, mitre, bevel).

If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

non

Logical. By default, the "x" and "y" axes variables for plotting are determined by
the first split in the tree. This can cause plot orientation mismatches depending
on how users specify the other layers of their plot. Setting to TRUE will flip the
"x" and "y" variables for the geom_parttree layer.

Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through

.. Unknown arguments that are not part of the 4 categories below are ignored.

« Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red” or linewidth
=3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

* When constructing a layer using a stat_x() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area”, outline.type = "both”). The
geom’s documentation lists which parameters it can accept.

* Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density”, adjust =0.5). The
stat’s documentation lists which parameters it can accept.

4 geom_parttree

e The key_glyph argument of layer () may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

Details

Because of the way that ggplot2 validates inputs and assembles plot layers, note that the data
input for geom_parttree() (i.e. decision tree object) must assigned in the layer itself; not in the
initialising ggplot2: :ggplot () call. See Examples.

Value

A ggplot layer.

Aesthetics

geom_parttree() aims to "work-out-of-the-box" with minimal input from the user’s side, apart
from specifying the data object. This includes taking care of the data transformation in a way that,
generally, produces optimal corner coordinates for each partition (i.e. xmin, xmax, ymin, and ymax).
However, it also understands the following aesthetics that users may choose to specify manually:

e fill (particularly encouraged, since this will provide a visual cue regarding the prediction in
each partition region)

e colour
e alpha
e linetype

* size

See Also

plot.parttree(), which provides an alternative plotting method using base R graphics.

Examples

install.packages("ggplot2")
library(ggplot2) # ggplot2 must be installed/loaded separately

library(parttree) # this package
library(rpart) # decision trees

#
Simple decision tree (max of two predictor variables)

iris_tree = rpart(Species ~ Petal.Length + Petal.Width, data=iris)
Plot with original iris data only
p = ggplot(data = iris, aes(x = Petal.Length, y = Petal.Width)) +

geom_point(aes(col = Species))

Add tree partitions to the plot (borders only)

geom_parttree

p + geom_parttree(data = iris_tree)

Better to use fill and highlight predictions
p + geom_parttree(data = iris_tree, aes(fill = Species), alpha=0.1)

To drop the black border lines (i.e. fill only)
p + geom_parttree(data = iris_tree, aes(fill = Species), col = NA, alpha = 0.1)

#
Example with plot orientation mismatch

p2 = ggplot(iris, aes(x=Petal.Width, y=Petal.Length)) +
geom_point(aes(col=Species))

Oops
p2 + geom_parttree(data = iris_tree, aes(fill=Species), alpha = 0.1)

Fix with 'flip = TRUE'
p2 + geom_parttree(data = iris_tree, aes(fill=Species), alpha = 0.1, flip = TRUE)

#
Various front-end frameworks are also supported, e.g.:

install.packages("”parsnip”)
library(parsnip)

iris_tree_parsnip = decision_tree() |>
set_engine("rpart”) |>
set_mode("classification”) |>
fit(Species ~ Petal.Length + Petal.Width, data=iris)

p + geom_parttree(data = iris_tree_parsnip, aes(fill=Species), alpha = 0.1)

#
Trees with continuous independent variables are also supported.

Note: you may need to adjust (or switch off) the fill legend to match the
original data, e.g.:

iris_tree_cont = rpart(Petal.Length ~ Sepal.Length + Petal.Width, data=iris)
p3 = ggplot(data = iris, aes(x = Petal.Width, y = Sepal.Length)) +
geom_parttree(

data = iris_tree_cont,

aes(fill = Petal.Length), alpha=0.5

)+

geom_point(aes(col = Petal.Length)) +

theme_minimal()

Legend scales don't quite match here:
p3

Better to scale fill to the original data
p3 + scale_fill_continuous(limits = range(iris$Petal.Length))

6 parttree

parttree Convert a decision tree into a data frame of partition coordinates

Description

Extracts the terminal leaf nodes of a decision tree that contains no more that two numeric predictor
variables. These leaf nodes are then converted into a data frame, where each row represents a
partition (or leaf or terminal node) that can easily be plotted in 2-D coordinate space.

Usage

parttree(tree, keep_as_dt = FALSE, flip = FALSE)

Arguments

tree An rpart.object or alike. This includes compatible classes from the m1r3 and
tidymodels frontends, or the constparty class inheriting from party.

keep_as_dt Logical. The function relies on data. table for internal data manipulation. But
it will coerce the final return object into a regular data frame (default behavior)
unless the user specifies TRUE.

flip Logical. Should we flip the "x" and "y" variables in the return data frame? The
default behaviour is for the first split variable in the tree to take the "y" slot, and

any second split variable to take the "x" slot. Setting to TRUE switches these
around.

Note: This argument is primarily useful when it passed via geom_parttree to en-
sure correct axes orientation as part of a ggplot2 visualization (see geom_parttree
Examples). We do not expect users to call parttree(..., flip=TRUE) di-
rectly. Similarly, to switch axes orientation for the native (base graphics) plot.parttree
method, we recommend calling plot(..., flip = TRUE) rather than flipping

the underlying parttree object.

Value
A data frame comprising seven columns: the leaf node, its path, a set of rectangle limits (i.e., xmin,
Xmax, ymin, ymax), and a final column corresponding to the predicted value for that leaf.

See Also

plot.parttree, geom_parttree, rpart, ctree partykit::ctree.

parttree

Examples

library("parttree”)

#
rpart trees

library("rpart"”)
rp = rpart(Kyphosis ~ Start + Age, data = kyphosis)

A parttree object is just a data frame with additional attributes
(rp_pt = parttree(rp))
attr(rp_pt, "parttree")

simple plot
plot(rp_pt)

removing the (recursive) partition borders helps to emphasise overall fit
plot(rp_pt, border = NA)

customize further by passing extra options to (tiny)plot

plot(
rp_pt,
border = NA, # no partition borders
pch = 16, # filled points
alpha = 0.6, # point transparency
grid = TRUE, # background grid
palette = "classic”, # new colour palette
x1lab = "Topmost vertebra operated on”, # custom x title
ylab = "Patient age (months)", # custom y title
main = "Tree predictions: Kyphosis recurrence” # custom title

)

#

conditional inference trees from partyit

library("partykit")

ct = ctree(Species ~ Petal.Length + Petal.Width, data = iris)

ct_pt = parttree(ct)

plot(ct_pt, pch = 19, palette = "okabe"”, main = "ctree predictions: iris species"”)

rpart via partykit
rp2 = as.party(rp)
parttree(rp2)

#
various front-end frameworks are also supported, e.g.

tidymodels

install.packages("parsnip")
library(parsnip)

8 plot.parttree

decision_tree() |>
set_engine("rpart”) |>
set_mode("classification”) |>
fit(Species ~ Petal.lLength + Petal.Width, data=iris) |>
parttree() |>
plot(main = "This time brought to you via parsnip...")

mlr3 (NB: use “keep_model = TRUE™ for mlr3 learners)

install.packages("mlr3")
library(mlr3)

task_iris = TaskClassif$new("iris”, iris, target = "Species")
task_iris$formula(rhs = "Petal.Length + Petal.Width")
fit_iris = 1lrn("classif.rpart”, keep_model = TRUE) # NB!
fit_iris$train(task_iris)

plot(parttree(fit_iris), main = "... and now mlr3")
plot.parttree Plot decision tree partitions
Description

Provides a plot method for parttree objects.

Usage
S3 method for class 'parttree'
plot(
X)
raw = TRUE,

border = "black”,
fill_alpha = 0.3,
expand = TRUE,
jitter = FALSE,

add = FALSE,
)
Arguments

X A parttree data frame.

raw Logical. Should the raw (original) data points be plotted too? Default is TRUE.
border Colour of the partition borders (edges). Default is "black". To remove the bor-

ders altogether, specify as NA.
fill_alpha Numeric in the range [0,1]. Alpha transparency of the filled partition rectan-

gles. Default is 0. 3.

plot.parttree 9

expand Logical. Should the partition limits be expanded to to meet the edge of the plot
axes? Default is TRUE. If FALSE, then the partition limits will extend only until
the range of the raw data.

jitter Logical. Should the raw points be jittered? Default is FALSE. Only evaluated if
raw = TRUE.
add Logical. Add to an existing plot? Default is FALSE.

Additional arguments passed down to tinyplot.

Value

No return value, called for side effect of producing a plot.

No return value; called for its side effect of producing a plot.

Examples

library("parttree”)

#
rpart trees

library("rpart"”)
rp = rpart(Kyphosis ~ Start + Age, data = kyphosis)

A parttree object is just a data frame with additional attributes
(rp_pt = parttree(rp))
attr(rp_pt, "parttree")

simple plot
plot(rp_pt)

removing the (recursive) partition borders helps to emphasise overall fit
plot(rp_pt, border = NA)

customize further by passing extra options to (tiny)plot

plot(
rp_pt,
border = NA, # no partition borders
pch = 16, # filled points
alpha = 0.6, # point transparency
grid = TRUE, # background grid
palette = "classic”, # new colour palette
x1lab = "Topmost vertebra operated on”, # custom x title
ylab = "Patient age (months)", # custom y title
main = "Tree predictions: Kyphosis recurrence” # custom title

)

#

conditional inference trees from partyit

library("partykit")
ct = ctree(Species ~ Petal.Length + Petal.Width, data = iris)

10

ct_pt = parttree(ct)

plot.parttree

plot(ct_pt, pch = 19, palette = "okabe”, main = "ctree predictions: iris species”)

rpart via partykit
rp2 = as.party(rp)
parttree(rp2)

#
various front-end frameworks are also supported, e.g.

tidymodels

install.packages("parsnip")
library(parsnip)

decision_tree() |>
set_engine("rpart”) |>
set_mode("classification”) |>
fit(Species ~ Petal.lLength + Petal.Width, data=iris) [>
parttree() |>
plot(main = "This time brought to you via parsnip...")

mlr3 (NB: use “keep_model = TRUE™ for mlr3 learners)

install.packages("mlr3")
library(mlr3)

task_iris = TaskClassif$new("iris”, iris, target = "Species")
task_iris$formula(rhs = "Petal.Length + Petal.Width")
fit_iris = lrn("classif.rpart”, keep_model = TRUE) # NB!
fit_iris$train(task_iris)

plot(parttree(fit_iris), main = "... and now mlr3")

Index

aes(), 2
borders(), 3
ctree, 6

geom_parttree, 2,6
ggplot, 4
ggplot2: :ggplot(), 4

key glyphs, 4

layer position, 3
layer stat, 3
layer(), 3, 4

parttree, 6,8
parttree(), 2
party, 6
partykit::ctree, 6
plot.parttree, 6, 8
plot.parttree(), 4

rpart, 6
rpart.object, 6
rpart::rpart.object, 2

tinyplot, 9

11

	geom_parttree
	parttree
	plot.parttree
	Index

