Package: tinyplot (via r-universe)

March 19, 2025

Type Package

Title Lightweight Extension of the Base R Graphics System
Version 0.3.0.99

Date 2025-02-05

Description Lightweight extension of the base R graphics system, with
support for automatic legends, facets, themes, and various
other enhancements.

License Apache License (>= 2)

Remotes etiennebacher/altdoc

Depends R (>=4.0)

Imports graphics, grDevices, stats, tools, utils

Suggests altdoc (>= 0.5.0.9000), fontquiver, png, rsvg, svglite,
tinytest, tinysnapshot (>= 0.0.3), knitr

Encoding UTF-8
RoxygenNote 7.3.2

URL https://grantmcdermott.com/tinyplot/

BugReports https://github.com/grantmcdermott/tinyplot/issues
Roxygen list(markdown = TRUE)

Repository https://grantmcdermott.r-universe.dev

RemoteUrl https://github.com/grantmcdermott/tinyplot

RemoteRef HEAD

RemoteSha b5240a2ffc74596d669b96ed276a065287711c7d

Contents

draw_legend . . . . . . ..
get_saved_par . . ... L. e e e
tinyplot . . . . Lo e
tinyplot_add . . . . . ...


https://grantmcdermott.com/tinyplot/
https://github.com/grantmcdermott/tinyplot/issues

2 draw_legend

tinytheme . . . . . . . .. e e e e e e 20
19072 A 23
type_abline . . . . ... 26
EYPE_AICA . . . . .t i e e e e e e e e e e e e e e e e 27
type_barplot . . . ... 28
type_boXplot . . . .. e e e e e 29
type_density . . . . .. L e e e e e e 30
type_errorbar . . . . ... e 33
type_function . . . . ... 34
type_glm . . . Lo 35
type_histogram . . . . . . ... e 35
type_hline . . . . . . . e e 37
type_Jitter . . . . . . e e e e e e 38
type_lines . . . . ... 39
type_lm . . ..o e 39
type_loess . . . . .. e 40
LYPE_POINES . . o o o o e e e e e e e e e e e 41
type_polygon . . . . .o L e e e e 41
type_polypath . . . . . ... 42
EYPE_QQ -« v v o e e e e e e e e e e e e e e e e e 43
EYPE_TECE . o o o o o e e e e 43
type_ridge . . . ... e 44
EYPE_TUZ « o o v e o et e e e e e e e e e e e e e e e e e e 48
LYPE_SEEMENLS .« . . v v v v et e e e e e e e e e e e e e e e e e e 50
type_spineplot . . . . . ... e 50
type_spline . . . . ... 52
TYPE_SUMIMALY . . . o v v v o e v v e v e e e e e e e e e e e e e e e 54
LYPE_EXE . o o e e e e e e e e e e e 55
type_VIine . . . . ... e e 56
draw_legend Calculate placement of legend and draw it
Description

Internal function used to calculate the placement of (including outside the plotting area) and drawing
of legend.

Usage

draw_legend(
legend = NULL,
legend_args = NULL,
by_dep = NULL,
lgnd_labs = NULL,
type = NULL,
pch = NULL,
1ty = NULL,



draw_legend 3

lwd = NULL,

col = NULL,

bg = NULL,

cex = NULL,
gradient = FALSE,
Imar = NULL,

has_sub = FALSE,
new_plot = TRUE

Arguments

legend Legend placement keyword or list, passed down from tinyplot.

legend_args Additional legend arguments to be passed to legend().

by_dep The (deparsed) "by" grouping variable name.

lgnd_labs The labels passed to legend(legend = ...).

type Plotting type(s), passed down from tinyplot.

pch Plotting character(s), passed down from tinyplot.

1ty Plotting linetype(s), passed down from tinyplot.

lwd Plotting line width(s), passed down from tinyplot.

col Plotting colour(s), passed down from tinyplot.

bg Plotting character background fill colour(s), passed down from tinyplot.

cex Plotting character expansion(s), passed down from tinyplot.

gradient Logical indicating whether a continuous gradient swatch should be used to rep-

resent the colors.

1mar Legend margins (in lines). Should be a numeric vector of the form c(inner,
outer), where the first number represents the "inner" margin between the legend
and the plot, and the second number represents the "outer" margin between the
legend and edge of the graphics device. If no explicit value is provided by the
user, then reverts back to tpar ("1mar") for which the default values are c(1.0,

0.1).
has_sub Logical. Does the plot have a sub-caption. Only used if keyword position is
"bottom!", in which case we need to bump the legend margin a bit further.
new_plot Logical. Should we be calling plot.new internally?
Value

No return value, called for side effect of producing a(n empty) plot with a legend in the margin.
Examples
oldmar = par("mar")

draw_legend(
legend = "right!"”, ## default (other options incl, "left(!)", ""bottom(!)", etc.)



draw_legend

legend_args = list(title = "Key”, bty = "0"),
lgnd_labs = c("foo”, "bar"),

type = "p",
pch = 21:22,
col = 1:2

)

# The legend is placed in the outer margin...
box("figure”, col = "cyan"”, 1ty = 4)

# ... and the plot is proportionally adjusted against the edge of this
# margin.

box("plot")

# You can add regular plot objects per normal now
plot.window(xlim = c¢(1,10), ylim = c(1,10))
points(1:10)

points(10:1, pch = 22, col = "red")

axis(1); axis(2)

# etc.

# Important: A side effect of draw_legend is that the inner margins have been
# adjusted. (Here: The right margin, since we called "right!" above.)
par("mar")

# To reset you should call “dev.off ()" or just reset manually.
par(mar = oldmar)

# Note that the inner and outer margin of the legend itself can be set via
# the ~1lmar™ argument. (This can also be set globally via
# "~ tpar(lmar = c(inner, outer))".)
draw_legend(
legend_args = list(title = "Key”, bty = "0"),
lgnd_labs = c("foo", "bar"),

type = "p",

pch = 21:22,

col = 1:2,

Imar = c(@, 0.1) ## set inner margin to zero

)
box("figure”, col = "cyan", lty = 4)

par(mar = oldmar)

# Continuous (gradient) legends are also supported
draw_legend(

legend = "right!"”,

legend_args = list(title = "Key"),

lgnd_labs = LETTERS[1:5],

col = hcl.colors(5),

gradient = TRUE ## enable gradient legend

par(mar = oldmar)



get_saved_par 5

get_saved_par Retrieve the saved graphical parameters

Description

Convenience function for retrieving the graphical parameters (i.e., the full list of tag = value pairs
held in par) from either immediately before or immediately after the most recent tinyplot call.

Usage
get_saved_par(when = c("before”, "after”, "first"))
Arguments
when character. From when should the saved parameters be retrieved? Either "before"
(the default) or "after" the preceding tinyplot call.
Details

A potential side-effect of tinyplot is that it can change a user’s par settings. For example, it may ad-
just the inner and outer plot margins to make space for an automatic legend; see draw_legend. While
it is possible to immediately restore the original par settings upon exit via the tinyplot(...,
restore.par = TRUE) argument, this is not the default behaviour. The reason being that we need
to preserve the adjusted parameter settings in case users want to add further graphical annotations
to their plot (e.g., abline, text, etc.) Nevertheless, it may still prove desirable to recall and reset
these original graphical parameters after the fact (e.g., once all these extra annotations have been
added). That is the purpose of this get_saved_par function.

Of course, users may prefer to manually capture and reset graphical parameters, as per the standard
method described in the par documentation. For example:

op = par(no.readonly = TRUE) # save current par settings
# <do lots of (tiny)plotting>
par(op) # reset original pars

This standard manual approach may be safer than get_saved_par because it offers more precise
control. Specifically, the value of get_saved_par itself will be reset after ever new tinyplot call; i.e.
it may inherit an already-changed set of parameters. Users should bear these trade-offs in mind
when deciding which approach to use. As a general rule, get_saved_par offers the convenience of
resetting the original par settings even if a user forgot to save them beforehand. But one should
avoid invoking it after a series of consecutive tinyplot calls.

Finally, note that users can always call dev.off to reset all par settings to their defaults.

Value

A list of par settings.



6 get_saved_par

Examples

#

# Contrived example where we draw a grouped scatterplot with a legend and
# manually add corresponding best fit lines for each group...

#

# First draw the grouped scatterplot
tinyplot(Sepal.Length ~ Petal.Length | Species, iris)

# Preserving adjusted par settings is good for adding elements to our plot
for (s in levels(iris$Species)) {
abline(
Im(Sepal.Length ~ Petal.Length, iris, subset = Species==s),
col = which(levels(iris$Species)==s)
)
3

# Get saved par from before the preceding tinyplot call (but don't use yet)
sp = get_saved_par("before")

# Note the changed margins will affect regular plots too, which is probably
# not desirable
plot(1:10)

# Reset the original parameters (could use “par(sp)” here)
tpar(sp)

# Redraw our simple plot with our corrected right margin
plot(1:10)

#
# Quick example going the other way, "correcting” for par.restore = TRUE...
#

tinyplot(Sepal.Length ~ Petal.Length | Species, iris, restore.par = TRUE)
# Our added best lines will be wrong b/c of misaligned par
for (s in levels(iris$Species)) {
abline(
Im(Sepal.Length ~ Petal.Length, iris, subset = Species==s),
col = which(levels(iris$Species)==s), lty = 2
)
3
# grab the par settings from the _end_ of the preceding tinyplot call to fix
tpar(get_saved_par("after”))
# now the best lines are correct
for (s in levels(iris$Species)) {
abline(
Im(Sepal.Length ~ Petal.Length, iris, subset = Species==s),
col = which(levels(iris$Species)==s)
)
}

# reset again to original saved par settings before exit



tinyplot 7

tpar(sp)

tinyplot Lightweight extension of the base R plotting function

Description

Enhances the base plot function. Supported features include automatic legends and facets for
grouped data, additional plot types, theme customization, and so on. Users can call either tinyplot(),
or its shorthand alias p1t ().

Usage

tinyplot(x, ...)

## Default S3 method:

tinyplot(
x = NULL,
y = NULL,
by = NULL,
facet = NULL,
facet.args = NULL,
data = NULL,
type = NULL,
xlim = NULL,
ylim = NULL,
log = "",
main = NULL,
sub = NULL,
xlab = NULL,
ylab = NULL,
ann = par("ann"),
axes = TRUE,
frame.plot = NULL,
asp = NA,
grid = NULL,
palette = NULL,
legend = NULL,

pch = NULL,
1ty = NULL,
lwd = NULL,
col = NULL,
bg = NULL,
fill = NULL,
alpha = NULL,

cex =1,



restore.par = FALSE,

'formula’'

xmin = NULL,
xmax = NULL,
ymin = NULL,
ymax = NULL,
add = FALSE,
draw = NULL,
file = NULL,
width = NULL,
height = NULL,
empty = FALSE,
xaxt = NULL,
yaxt = NULL,
flip = FALSE,
xaxs = NULL,
yaxs = NULL,
)
## S3 method for class
tinyplot(
x = NULL,
data = parent.frame(),
facet = NULL,
facet.args = NULL,
type = NULL,
xlim = NULL,
ylim = NULL,
main = NULL,
sub = NULL,
xlab = NULL,
ylab = NULL,
ann = par("ann"),
axes = TRUE,
frame.plot = NULL,
asp = NA,
grid = NULL,
pch = NULL,
col = NULL,
1ty = NULL,
lwd = NULL,

restore.par = FALSE,

formula = NULL,
subset = NULL,
na.action = NULL,
drop.unused. levels = TRUE,

tinyplot



tinyplot 9

## S3 method for class 'density'

tinyplot(x = NULL, type = c("1", "area"), ...)
plt(x, ...)
Arguments
X,y the x and y arguments provide the x and y coordinates for the plot. Any rea-

sonable way of defining the coordinates is acceptable; most likely the names of
existing vectors or columns of data frames. See the ’Examples’ section below,
or the function xy. coords for details. If supplied separately, x and y must be of
the same length.

other graphical parameters. If type is a character specification (such as "hist")
then any argument names that match those from the corresponding type_x ()
function (such as type_hist) are passed on to that. All remaining arguments
from ... can be further graphical parameters, see par).

by grouping variable(s). The default behaviour is for groups to be represented in
the form of distinct colours, which will also trigger an automatic legend. (See
legend below for customization options.) However, groups can also be pre-
sented through other plot parameters (e.g., pch or 1ty) by passing an appropriate
"by" keyword; see Examples. Note that continuous (i.e., gradient) colour leg-
ends are also supported if the user passes a numeric or integer to by. To group
by multiple variables, wrap them with interaction.

facet the faceting variable(s) that you want arrange separate plot windows by. Can be
specified in various ways:

e In "atomic" form, e.g. facet = fvar. To facet by multiple variables in
atomic form, simply interact them, e.g. interaction(fvar1, fvar2) or
factor(fvarl):factor(fvar2).

* As a one-sided formula, e.g. facet = ~fvar. Multiple variables can be
specified in the formula RHS, e.g. ~fvar1 + fvar2 or ~fvar1:fvar2. Note
that these multi-variable cases are all treated equivalently and converted
to interaction(fvaril, fvar2, ...) internally. (No distinction is made
between different types of binary operators, for example, and so f1+f2 is
treated the same as f1:f2, is treated the same as f1xf2, etc.)

* As atwo-side formula, e.g. facet = fvar1 ~ fvar2. In this case, the facet
windows are arranged in a fixed grid layout, with the formula LHS defining
the facet rows and the RHS defining the facet columns. At present only
single variables on each side of the formula are well supported. (We don’t
recommend trying to use multiple variables on either the LHS or RHS of
the two-sided formula case.)

* As a special "by" convenience keyword, in which case facets will match
the grouping variable(s) passed to by above.

facet.args an optional list of arguments for controlling faceting behaviour. (Ignored if
facet is NULL.) Supported arguments are as follows:

* nrow, ncol for overriding the default "square" facet window arrangement.
Only one of these should be specified, but nrow will take precedence if both



tinyplot

are specified together. Ignored if a two-sided formula is passed to the main
facet argument, since the layout is arranged in a fixed grid.

* free a logical value indicating whether the axis limits (scales) for each
individual facet should adjust independently to match the range of the data
within that facet. Default is FALSE. Separate free scaling of the x- or y-axis
(i.e., whilst holding the other axis fixed) is not currently supported.

* fmar a vector of form c(b, 1, t, r) for controlling the base margin between
facets in terms of lines. Defaults to the value of tpar("fmar"), which
should be c(1,1,1,1), i.e. a single line of padding around each individual
facet, assuming it hasn’t been overridden by the user as part their global
tpar settings. Note some automatic adjustments are made for certain lay-
outs, and depending on whether the plot is framed or not, to reduce excess
whitespace. See tpar for more details.

* cex, font, col, bg, border for adjusting the facet title text and background.
Default values for these arguments are inherited from tpar (where they take
a "facet." prefix, e.g. tpar("facet.cex")). The latter function can also be
used to set these features globally for all tinyplot plots.

data a data.frame (or list) from which the variables in formula should be taken. A
matrix is converted to a data frame.

type character string or call to a type_x() function giving the type of plot desired.
* NULL (default): Choose a sensible type for the type of x and y inputs (i.e.,
usually "p").
* 1-character values supported by plot:
— "p" Points
— "1" Lines
— "b" Both points and lines
— "c" Empty points joined by lines
— "0" Overplotted points and lines
— "s" Stair steps
— "S" Stair steps
— "h" Histogram-like vertical lines
— "n" Empty plot over the extent of the data
* tinyplot-specific types. These fall into several categories:
— Shapes:
x "area" / type_area(): Plots the area under the curve from y = 0 to
y =1(x).
% "errorbar”/type_errorbar(): Adds error bars to points; requires
ymin and ymax.

# "pointrange” / type_pointrange(): Combines points with error
bars.

* "polygon” / type_polygon(): Draws polygons.

* "polypath” / type_polypath(): Draws a path whose vertices are
given in x and y.

* "rect”/type_rect(): Draws rectangles; requires xmin, xmax, ymin,
and ymax.



tinyplot

xlim

ylim
log

main
sub

xlab
ylab

ann

11

* "ribbon” / type_ribbon(): Creates a filled area between ymin and
ymax.

* "segments”/type_segments(): Draws line segments between pairs
of points.

x "text" /type_text(): Add text annotations.
— Visualizations:
* "barplot” / type_barplot(): Creates a bar plot.
# "boxplot” / type_boxplot(): Creates a box-and-whisker plot.

* "density"” / type_density(): Plots the density estimate of a vari-
able.

% "histogram” / type_histogram(): Creates a histogram of a single
variable.

* "jitter” /type_jitter(): Jittered points.
# "qq"” / type_qq(): Creates a quantile-quantile plot.
* "ridge"” / type_ridge(): Creates a ridgeline (aka joy) plot.
# "rug" / type_rug(): Adds arug to an existing plot.
* "spineplot” / type_spineplot(): Creates a spineplot or spino-
gram.
— Models:
* "loess" / type_loess(): Local regression curve.
% "1m" / type_1lm(): Linear regression line.
x "glm" / type_glm(): Generalized linear model fit.
% "spline” / type_spline(): Cubic (or Hermite) spline interpola-
tion.
— Functions:
# type_abline(): line(s) with intercept and slope.
x type_hline(): horizontal line(s).

*

type_vline(): vertical line(s).
# type_function(): arbitrary function.
* type_summary(): summarize y by unique values of x.

the x limits (x1, x2) of the plot. Note that x1 > x2 is allowed and leads to a
‘reversed axis’. The default value, NULL, indicates that the range of the finite
values to be plotted should be used.

the y limits of the plot.

a character string which contains "x" if the x axis is to be logarithmic, "y" if the
y axis is to be logarithmic and "xy" or "yx" if both axes are to be logarithmic.

a main title for the plot, see also title.

a subtitle for the plot.

a label for the x axis, defaults to a description of x.
a label for the y axis, defaults to a description of y.

a logical value indicating whether the default annotation (title and x and y axis
labels) should appear on the plot.



12

axes

frame.plot

asp

grid

palette

legend

tinyplot

logical or character. Should axes be drawn (TRUE or FALSE)? Or alternatively
what type of axes should be drawn: "standard” (with axis, ticks, and labels;
equivalent to TRUE), "none” (no axes; equivalent to FALSE), "ticks" (only ticks
and labels without axis line), "1abels"” (only labels without ticks and axis line),
"axis" (only axis line and labels but no ticks). To control this separately for the
two axes, use the character specifications for xaxt and/or yaxt.

a logical indicating whether a box should be drawn around the plot. Can also
use frame as an acceptable argument alias. The default is to draw a frame if
both axis types (set via axes, xaxt, or yaxt) include axis lines.

the y/xy/x aspect ratio, see plot.window.
argument for plotting a background panel grid, one of either:

* alogical (i.e., TRUE to draw the grid), or
* apanel grid plotting function like grid(). Note that this argument replaces
the panel.first and panel.last arguments from base plot () and tries to
make the process more seamless with better default behaviour. The default
behaviour is determined by (and can be set globally through) the value of
tpar("grid").
one of the following options:

e NULL (default), in which case the palette will be chosen according to the
class and cardinality of the "by" grouping variable. For non-ordered fac-
tors or strings with a reasonable number of groups, this will inherit directly
from the user’s default palette (e.g., "R4"). In other cases, including or-
dered factors and high cardinality, the "Viridis" palette will be used instead.
Note that a slightly restricted version of the "Viridis" palette—where ex-
treme color values have been trimmed to improve visual perception—will
be used for ordered factors and continuous variables. In the latter case of a
continuous grouping variable, we also generate a gradient legend swatch.

* A convenience string corresponding to one of the many palettes listed by
either palette.pals() or hcl.pals(). Note that the string can be case-
insensitive (e.g., "Okabe-Ito" and "okabe-ito" are both valid).

* A palette-generating function. This can be "bare" (e.g., palette.colors)
or "closed" with a set of named arguments (e.g., palette.colors(palette
= "Okabe-Ito", alpha =0.5)). Note that any unnamed arguments will be
ignored and the key n argument, denoting the number of colours, will auto-
matically be spliced in as the number of groups.

* A vector or list of colours, e.g. c("darkorange”, "purple”, "cyan4"). If
too few colours are provided for a discrete (qualitative) set of groups, then
the colours will be recycled with a warning. For continuous (sequential)
groups, a gradient palette will be interpolated.

one of the following options:

* NULL (default), in which case the legend will be determined by the group-
ing variable. If there is no group variable (i.e., by is NULL) then no legend
is drawn. If a grouping variable is detected, then an automatic legend is
drawn to the outer right of the plotting area. Note that the legend title and
categories will automatically be inferred from the by argument and under-
lying data.



tinyplot

pch

1ty

Iwd

col

bg

13

* A convenience string indicating the legend position. The string should cor-
respond to one of the position keywords supported by the base legend
function, e.g. "right", "topleft"”, "bottom", etc. In addition, tinyplot sup-
ports adding a trailing exclamation point to these keywords, e.g. "right!",
"topleft!", or "bottom!". This will place the legend outside the plotting area
and adjust the margins of the plot accordingly. Finally, users can also turn
off any legend printing by specifying "none".

* Logical value, where TRUE corresponds to the default case above (same
effect as specifying NULL) and FALSE turns the legend off (same effect as
specifying "none").

* A list or, equivalently, a dedicated legend() function with supported leg-
end arguments, e.g. "bty", "horiz", and so forth.

plotting "character", i.e., symbol to use. Character, integer, or vector of length
equal to the number of categories in the by variable. See pch. In addition, users
can supply a special pch = "by" convenience argument, in which case the char-
acters will automatically loop over the number groups. This automatic looping
will begin at the global character value (i.e., par ("pch")) and recycle as neces-
sary.

line type. Character, integer, or vector of length equal to the number of cate-
gories in the by variable. See 1ty. In addition, users can supply a special 1ty =
"by" convenience argument, in which case the line type will automatically loop
over the number groups. This automatic looping will begin at the global line
type value (i.e., par("1ty")) and recycle as necessary.

line width. Numeric scalar or vector of length equal to the number of categories
in the by variable. See 1wd. In addition, users can supply a special 1lwd = "by"
convenience argument, in which case the line width will automatically loop over
the number of groups. This automatic looping will be centered at the global line
width value (i.e.,

plotting color. Character, integer, or vector of length equal to the number of cat-
egories in the by variable. See col. Note that the default behaviour in tinyplot
is to vary group colors along any variables declared in the by argument. Thus,
specifying colors manually should not be necessary unless users wish to override
the automatic colors produced by this grouping process. Typically, this would
only be done if grouping features are deferred to some other graphical parameter
(i.e., passing the "by" keyword to one of pch, 1ty, 1wd, or bg; see below.)

background fill color for the open plot symbols 21:25 (see points.default),
as well as ribbon and area plot types. Users can also supply either one of two
special convenience arguments that will cause the background fill to inherit the
automatic grouped coloring behaviour of col:

* bg = "by" will insert a background fill that inherits the main color mappings
from col.

* by = <numeric[®@,1]> (i.e., a numeric in the range [@,1]) will insert a
background fill that inherits the main color mapping(s) from col, but with
added alpha-transparency.

For both of these convenience arguments, note that the (grouped) bg mappings
will persist even if the (grouped) col defaults are themselves overridden. This



14

fill

alpha

cex

restore.par

tinyplot

can be useful if you want to preserve the grouped palette mappings by back-
ground fill but not boundary color, e.g. filled points. See examples.

alias for bg. If non-NULL values for both bg and fill are provided, then the
latter will be ignored in favour of the former.

a numeric in the range [0, 1] for adjusting the alpha channel of the color palette,
where (0 means transparent and 1 means opaque. Use fractional values, e.g. 0.5
for semi-transparency.

character expansion. A numerical vector (can be a single value) giving the
amount by which plotting characters and symbols should be scaled relative to the
default. Note that NULL is equivalent to 1.0, while NA renders the characters
invisible.

a logical value indicating whether the par settings prior to calling tinyplot
should be restored on exit. Defaults to FALSE, which makes it possible to add
elements to the plot after it has been drawn. However, note the the outer margins
of the graphics device may have been altered to make space for the tinyplot
legend. Users can opt out of this persistent behaviour by setting to TRUE in-
stead. See also get_saved_par for another option to recover the original par
settings, as well as longer discussion about the trade-offs involved.

xmin, xmax, ymin, ymax

add

draw

file

minimum and maximum coordinates of relevant area or interval plot types.
Only used when the type argument is one of "rect” or "segments” (where

all four min-max coordinates are required), or "pointrange”, "errorbar”, or
"ribbon” (where only ymin and ymax required alongside x).

logical. If TRUE, then elements are added to the current plot rather than draw-
ing a new plot window. Note that the automatic legend for the added elements
will be turned off. See also tinyplot_add, which provides a convenient wrapper
around this functionality for layering on top of an existing plot without having
to repeat arguments.

a function that draws directly on the plot canvas (before x and y are plotted). The
draw argument is primarily useful for adding common elements to each facet
of a faceted plot, e.g. abline or text. Note that this argument is somewhat
experimental and that no internal checking is done for correctness; the provided
argument is simply captured and evaluated as-is. See Examples.

character string giving the file path for writing a plot to disk. If specified, the
plot will not be displayed interactively, but rather sent to the appropriate exter-
nal graphics device (i.e., png, jpeg, pdf, or svg). As a point of convenience,
note that any global parameters held in (t)par are automatically carried over
to the external device and don’t need to be reset (in contrast to the conventional
base R approach that requires manually opening and closing the device). The
device type is determined by the file extension at the end of the provided path,
and must be one of ".png", ".jpg" (".jpeg"), ".pdf", or ".svg". (Other file types
may be supported in the future.) The file dimensions can be controlled by the
corresponding width and height arguments below, otherwise will fall back to
the "file.width” and "file.height" values held in tpar (i.e., both default-
ing to 7 inches, and where the default resolution for bitmap files is also specified
as 300 DPI).



tinyplot

width

height

empty

xaxt, yaxt

flip

Xaxs, yaxs

formula

15

numeric giving the plot width in inches. Together with height, typically used
in conjunction with the file argument above, overriding the default values held
in tpar("file.width”, "file.height"). If either width or height is spec-
ified, but a corresponding file argument is not provided as well, then a new
interactive graphics device dimensions will be opened along the given dimen-
sions. Note that this interactive resizing may not work consistently from within
an IDE like RStudio that has an integrated graphics windows.

numeric giving the plot height in inches. Same considerations as width (above)
apply, e.g. will default to tpar("file.height") if not specified.

logical indicating whether the interior plot region should be left empty. The
default is FALSE. Setting to TRUE has a similar effect to invoking type = "n"
above, except that any legend artifacts owing to a particular plot type (e.g., lines
for type = "1" or squares for type = "area") will still be drawn correctly along-
side the empty plot. In contrast,type = "n" implicitly assumes a scatterplot and
so any legend will only depict points.

character specifying the type of x-axis and y-axis, respectively. See axes for the
possible values.

logical. Should the plot orientation be flipped, so that the y-axis is on the hori-
zontal plane and the x-axis is on the vertical plane? Default is FALSE.

character specifying the style of the interval calculation used for the x-axis and
y-axis, respectively. See par for the possible values.

a formula that optionally includes grouping variable(s) after a vertical bar, e.g.
y ~ x | z. One-sided formulae are also permitted, e.g. ~y | z. Only a single
y and x variable (if any) must be specified but multiple grouping variables can
be included in different ways, e.g. y ~ x | z1:z2 ory ~ x | z1 + z2. (These two
representations are treated as equivalent; both are parsed as interaction(z1,
z2) internally.) If arithmetic operators are used for transforming variables, they
should be wrapped in I(), e.g., I(y1/y2) ~x. Note that the formula and x
arguments should not be specified in the same call.

subset, na.action, drop.unused. levels

Details

arguments passed to model. frame when extracting the data from formula and
data.

Disregarding the enhancements that it supports, tinyplot tries as far as possible to mimic the
behaviour and syntax logic of the original base plot function. Users should therefore be able to
swap out existing plot calls for tinyplot (or its shorthand alias plt), without causing unexpected
changes to the output.

Value

No return value, called for side effect of producing a plot.

Examples

#'



tinyplot

aq = transform(

airquality,

Month = factor(Month, labels = month.abb[unique(Month)1)
)

# In most cases, ~tinyplot™ should be a drop-in replacement for regular
# “plot™ calls. For example:

op = tpar(mfrow = c(1, 2))
plot(@:10, main = "plot")
tinyplot(@:10, main = "tinyplot")
tpar(op) # restore original layout

# Aside: “tinyplot::tpar()” is a (near) drop-in replacement for “par()"

# Unlike vanilla plot, however, tinyplot allows you to characterize groups
# using either the “by™ argument or equivalent ~ |~ formula syntax.

with(aq, tinyplot(Day, Temp, by = Month)) ## atomic method
tinyplot(Temp ~ Day | Month, data = aq) ## formula method

# (Notice that we also get an automatic legend.)

# You can also use the equivalent shorthand “plt()" alias if you'd like to
# save on a few keystrokes

plt(Temp ~ Day | Month, data = aq) ## shorthand alias
# Use standard base plotting arguments to adjust features of your plot.

# For example, change “pch™ (plot character) to get filled points and ~cex”
# (character expansion) to increase their size.

tinyplot(
Temp ~ Day | Month,
data = aq,
pch = 16,
cex = 2
)

# We can add alpha transparency for overlapping points

tinyplot(
Temp ~ Day | Month,
data = aq,
pch = 16,
cex = 2,
alpha = 0.3
)

# To get filled points with a common solid background color, use an

# appropriate plotting character (21:25) and combine with one of the special
# “bg> convenience arguments.

tinyplot(



tinyplot

Temp ~ Day | Month,

data = aq,

pch = 21, # use filled circles

cex = 2,

bg = 0.3, # numeric in [0,1] adds a grouped background fill with transparency
col = "black” # override default color mapping; give all points a black border

)

# Converting to a grouped line plot is a simple matter of adjusting the
# “type” argument.

tinyplot(
Temp ~ Day | Month,
data = aq,
type = "1”

)

# Similarly for other plot types, including some additional ones provided
# directly by tinyplot, e.g. density plots or internal plots (ribbons,
# pointranges, etc.)

tinyplot(
~ Temp | Month,
data = aq,
type = "density”,
fill = "by"

)

# Facet plots are supported too. Facets can be drawn on their own...

tinyplot(
Temp ~ Day,
facet = ~Month,
data = aq,
type = "area”,
main = "Temperatures by month”
)
# ... or combined/contrasted with the by (colour) grouping.

aq = transform(ag, Summer = Month %in% c("Jun”, "Jul"”, "Aug"))
tinyplot(

Temp ~ Day | Summer,

facet = ~Month,

data = aq,

type = "area",

palette = "dark2",

main = "Temperatures by month and season”

# Users can override the default square window arrangement by passing “nrow”
or “ncol” to the helper facet.args argument. Note that we can also reduce
# axis label repetition across facets by turning the plot frame off.

ETS



18

tinyplot(
Temp ~ Day | Summer,
facet = ~Month, facet.args = list(nrow = 1),
data = aq,
type = "area”,
palette = "dark2",
frame = FALSE,
main = "Temperatures by month and season”

# Use a two-sided formula to arrange the facet windows in a fixed grid.
# LHS -> facet rows; RHS -> facet columns

aqg$hot = ifelse(aq$Temp >= 75, "hot”, "cold")
aq$windy = ifelse(aq$Wind >= 15, "windy"”, "calm")
tinyplot(

Temp ~ Day,

facet = windy ~ hot,

data = aq
)

# To add common elements to each facet, use the “draw™ argument

tinyplot(
Temp ~ Day,
facet = windy ~ hot,
data = aq,
draw = abline(h = 75, 1ty = 2, col = "hotpink")

The (automatic) legend position and look can be customized using

appropriate arguments. Note the trailing "!" in the ~legend” position
argument below. This tells “tinyplot™ to place the legend _outside_ the plot
area.

H oH H H

tinyplot(
Temp ~ Day | Month,
data = aq,
type = "1",
legend = legend("bottom!”, title = "Month of the year”, bty = "0o")

# The default group colours are inherited from either the "R4" or "Viridis”
# palettes, depending on the number of groups. However, all palettes listed
# by “palette.pals()” and “hcl.pals()" are supported as convenience strings,
# or users can supply a valid palette-generating function for finer control
tinyplot(

Temp ~ Day | Month,

data = aq,

type = "1",

palette = "tableau”

tinyplot



tinyplot_add 19

)
# It's possible to customize the look of your plots by setting graphical
# parameters (e.g., via “(t)par™)... But a more convenient way is to just use

# built-in themes (see ~?tinytheme™).

tinytheme("clean2")

tinyplot(
Temp ~ Day | Month,
data = aq,
type = "b",
alpha = 0.5,
main = "Daily temperatures by month"”,
sub = "Brought to you by tinyplot”
)
# reset the theme
tinytheme()

# For more examples and a detailed walkthrough, please see the introductory
# tinyplot tutorial available online:
# https://grantmcdermott.com/tinyplot/vignettes/introduction.html

tinyplot_add Add new elements to the current tinyplot

Description

This convenience function grabs the preceding tinyplot call and updates it with any new argu-
ments that have been explicitly provided by the user. It then injects add=TRUE and evaluates the
updated call, thereby drawing a new layer on top of the existing plot. plt_add() is a shorthand
alias for tinyplot_add().

Usage

tinyplot_add(...)

plt_add(...)
Arguments
All named arguments override arguments from the previous calls. Arguments
not supplied to tinyplot_add remain unchanged from the previous call.
Value

No return value, called for side effect of producing a plot.



20 tinytheme

Limitations

 Currently, tinyplot_add only works reliably if you are adding to a plot that was originally
constructed with the tinyplot.formula method (and passed an appropriate data argument). In
contrast, we cannot guarantee that using tinyplot_add will work correctly if your original
plot was constructed with the atomic tinyplot.default method. The reason has to do with
potential environment mismatches. (An exception is thus if your plot arguments (x, y, etc.)
are attached to your global R environment.)

* Automatic legends for the added elements will be turned off.

Examples

library(tinyplot)

tinyplot(Sepal.Width ~ Sepal.Length | Species,
facet = ~Species,
data = iris)

tinyplot_add(type = "1m") ## or : plt_add(type = "lm")

## Note: the previous function is equivalent to (but much more convenient
## than) re-writing the full call with the new type and ~add=TRUE":

# tinyplot(Sepal.Width ~ Sepal.Length | Species,

# facet = ~Species,
# data = iris,
# type = "1Im",
# add = TRUE)
tinytheme Set or Reset Plot Themes for tinyplot
Description

The tinytheme function sets or resets the theme for plots created with tinyplot. Themes control
the appearance of plots, such as text alignment, font styles, axis labels, and even dynamic margin
adjustment to reduce whitespace.

Usage

tinytheme(
theme = c("default”, "basic”, "clean”, "clean2”, "bw", "classic”, "minimal”, "ipsum"”,
"dark”, "ridge", "ridge2", "tufte"”, "void"),



tinytheme

Arguments

theme

21

A character string specifying the name of the theme to apply. Themes are ar-
ranged in an approximate hierarchy, adding or subtracting elements in the order
presented below. Note that several themes are dynamic, in the sense that they
attempt to reduce whitespace in a way that is responsive to the length of axes
labels, tick marks, etc. These dynamic plots are marked with an asterisk (*)
below.

"default”: inherits the user’s default base graphics settings.

"basic”: light modification of "default”, only adding filled points, a
panel background grid, and light gray background to facet titles.

"clean” (*): builds on "basic” by moving the subtitle above the plotting
area, adding horizontal axis labels, employing tighter default plot margins
and title gaps to reduce whitespace, and setting different default palettes
("Tableau 10" for discrete colors and "agSunset" for gradient colors). The
first of our dynamic themes and the foundation for several derivative themes
that follow below.

"clean2"” (*): removes the plot frame (box) from "clean”.

"classic” (*): connects the axes in a L-shape, but removes the other top
and right-hand edges of the plot frame (box). Also sets the "Okabe-Ito"
palette as a default for discrete colors. Inspired by the ggplot2 theme of the
same name.

"bw" (*): similar to "clean”, except uses thinner lines for the plot frame
(box), solid grid lines, and sets the "Okabe-Ito" palette as a default for dis-
crete colors. Inspired by the ggplot2 theme of the same name.

"minimal” (*): removes the plot frame (box) from "bw", as well as the
background for facet titles. Inspired by the ggplot2 theme of the same
name.

"ipsum” (*): similar to "minimal”, except subtitle is italicised and axes
titles are aligned to the far edges. Inspired by the hrbrthemes theme of the
same name for ggplot2.

"dark” (*): similar to "minimal”, but set against a dark background with
foreground and a palette colours lightened for appropriate contrast.
"ridge” (*): a specialized theme for ridge plots (see type_ridge()). Builds
off of "clean”, but adds ridge-specific tweaks (e.g. default "Zissou 1"
palette for discrete colors, solid horizontal grid lines, and minor adjust-
ments to y-axis labels). Not recommended for non-ridge plots.

"ridge2" (*): removes the plot frame (box) from "ridge"”, but retains the
x-axis line. Again, not recommended for non-ridge plots.

"tufte"”: floating axes and minimalist plot artifacts in the style of Edward
Tufte.

"void": switches off all axes, titles, legends, etc.

Named arguments to override specific theme settings. These arguments are
passed to tpar() and take precedence over the predefined settings in the se-
lected theme.



22 tinytheme

Details

Sets a list of graphical parameters using tpar ()
To reset the theme to default settings (no customization), call tinytheme () without arguments.

Caveat emptor: Themes are a somewhat experimental feature of tinyplot. While we feel confi-
dent that themes should work as expected for most "standard" cases, there may be some sharp edges.
Please report any unexpected behaviour to our GitHub repo: https://github.com/grantmcdermott/
tinyplot/issues

Known current limitations include:

e Themes do not work well when legend = "top!".

* Dynamic margin spacing does not account for multi-line strings (e.g., axes or main titles that
contain "\n").
Value

The function returns nothing. It is called for its side effects.

See Also

tpar which does the heavy lifting under the hood.

Examples

# Reusable plot function
p = function() tinyplot(
lat ~ long | depth, data = quakes,

main = "Earthquakes off Fiji",

sub = "Data courtesy of the Harvard PRIM-H project”
)
PO

# Set a theme
tinytheme("bw")
PO

# Try a different theme
tinytheme("dark")
PO

# Customize the theme by overriding default settings
tinytheme("bw", fg = "green”, font.main = 2, font.sub = 3, family = "Palatino"”)

PO

# Another custom theme example
tinytheme("bw"”, font.main = 2, col.axis = "darkcyan", family = "HersheyScript")

pO

# Aside: One or two specialized themes are only meant for certain plot types
tinytheme("ridge2")
tinyplot(I(cut(lat, 10)) ~ depth, data = quakes, type = "ridge")


https://github.com/grantmcdermott/tinyplot/issues
https://github.com/grantmcdermott/tinyplot/issues

tpar 23

# Reset the theme
tinytheme()
PO

# Themes showcase
## We'll use a slightly more intricate plot (long y-axis labs and facets)
## to demonstrate dynamic margin adjustment etc.

thms = eval(formals(tinytheme)$theme)

for (thm in thms) {

tinytheme (thm)
tinyplot(
I(Sepal.Length*1e4) ~ Petal.Length | Species, facet = "by", data = iris,
main = "Demonstration of tinyplot themes”,
sub = paste@('tinytheme(”', thm, '")")
)
}
# Reset
tinytheme()
tpar Set or query graphical parameters
Description

Extends par, serving as a (near) drop-in replacement for setting or querying graphical parameters.
The key differences is that, beyond supporting the standard group of R graphical parameters in par,
tpar also supports additional graphical parameters that are provided by tinyplot. Similar to par,
parameters are set by passing appropriate key = value argument pairs, and multiple parameters can
be set or queried at the same time.

Usage
tpar(..., hook = FALSE)
Arguments
arguments of the form key = value. This includes all of the parameters typi-
cally supported by par, as well as the tinyplot-specific ones described in the
’Graphical Parameters’ section below.
hook Logical. If TRUE, base graphical parameters persist across plots via a hook ap-

plied before each new plot (see ?setHook).



24 tpar

Details

The tinyplot-specific parameters are saved in an internal environment called . tpar for perfor-
mance and safety reasons. However, they can also be set at package load time via options, which
may prove convenient for users that want to enable different default behaviour at startup (e.g.,
through an .Rprofile file). These options all take a tinyplot_x* prefix, e.g. options(tinyplot_grid
=TRUE, tinyplot_facet.bg = "grey90").

For their part, any "base" graphical parameters are caught dynamically and passed on to par as ap-
propriate. Technically, only parameters that satisfy par(..., no.readonly = TRUE) are evaluated.

However, note the important distinction: tpar only evaluates parameters from par if they are passed
explicitly by the user. This means that tpar should not be used to capture the (invisible) state of a
user’s entire set of graphics parameters, i.e. tpar () !=par(). If you want to capture the all existing
graphics settings, then you should rather use par () instead.

Value

When parameters are set, their previous values are returned in an invisible named list. Such a list
can be passed as an argument to tpar to restore the parameter values.

When just one parameter is queried, the value of that parameter is returned as (atomic) vector. When
two or more parameters are queried, their values are returned in a list, with the list names giving the
parameters.

Note the inconsistency: setting one parameter returns a list, but querying one parameter returns a
vector.

Additional Graphical Parameters

* adj.xlab: Numeric value between 0 and 1 controlling the alignment of the x-axis label.
* adj.ylab: Numeric value between 0 and 1 controlling the alignment of the y-axis label.

 cairo: Logical indicating whether cairo_pdf should be used when writing plots to PDF. If
FALSE, then pdf will be used instead, with implications for embedding (non-standard) fonts.
Only used if tinyplot(..., file = "<filename>.pdf") is called. Defaults to the value of
capabilities("cairo").

* dynmar: Logical indicating whether tinyplot should attempt dynamic adjustment of margins
to reduce whitespace and/or account for spacing of text elements (e.g., long horizontal y-axis
labels). Note that this parameter is tightly coupled to internal tinythemes() logic and should
not be adjusted manually unless you really know what you are doing or don’t mind risking
unintended consequences to your plot.

e facet.bg: Character or integer specifying the facet background colour. If an integer, will
correspond to the user’s default colour palette (see palette). Passed to rect. Defaults to
NULL (none).

» facet.border: Character or integer specifying the facet border colour. If an integer, will
correspond to the user’s default colour palette (see palette). Passed to rect. Defaults to NA
(none).

» facet.cex: Expansion factor for facet titles. Defaults to 1.

» facet.col: Character or integer specifying the facet text colour. If an integer, will correspond

to the user’s default global colour palette (see palette). Defaults to NULL, which is equivalent
to "black".



tpar 25

* facet.font: An integer corresponding to the desired font face for facet titles. For most font
families and graphics devices, one of four possible values: 1 (regular), 2 (bold), 3 (italic), or 4
(bold italic). Defaults to NULL, which is equivalent to 1 (i.e., regular).

* file.height: Numeric specifying the height (in inches) of any plot that is written to disk
using the tinyplot (..., file = X) argument. Defaults to 7.

* file.res: Numeric specifying the resolution (in dots per square inch) of any plot that is
written to disk in bitmap format (i.e., PNG or JPEG) using the tinyplot(..., file=X)
argument. Defaults to 300.

e file.width: Numeric specifying the width (in inches) of any plot that is written to disk using
the tinyplot(..., file = X) argument. Defaults to 7.

e fmar: A numeric vector of form c(b,1,t,r) for controlling the (base) margin padding, in
terms of lines, between the individual facets in a faceted plot. Defaults to c(1,1,1,1). If
more than three facets are detected, the fmar parameter is scaled by 0.75 to reduce excess
whitespace. For 2x2 plots, the padding better matches the cex expansion logic of base graph-
ics.

e grid.col: Character or (integer) numeric that specifies the color of the panel grid lines. De-
faults to "lightgray”.

e grid.1lty: Character or (integer) numeric that specifies the line type of the panel grid lines.
Defaults to "dotted”.

* grid.lwd: Non-negative numeric giving the line width of the panel grid lines. Defaults to 1.

» grid: Logical indicating whether a background panel grid should be added to plots automati-
cally. Defaults to NULL, which is equivalent to FALSE.

* 1lmar: A numeric vector of form c(inner, outer) that gives the margin padding, in terms of
lines, around the automatic tinyplot legend. Defaults to c(1.0, @.1). The inner margin is
the gap between the legend and the plot region, and the outer margin is the gap between the
legend and the edge of the graphics device.

* palette.qualitative: Palette for qualitative colors. See the palette argumentin ?tinyplot.
* palette.sequential: Palette for sequential colors. See the palette argumentin ?tinyplot.

* ribbon.alpha: Numeric factor in the range [0, 1] for modifying the opacity alpha of "ribbon"
and "area" type plots. Default value is @. 2.

See Also

graphics: :par which tpar builds on top of. get_saved_par is a convenience function for retriev-
ing graphical parameters at different stages of a tinyplot call (and used for internal accounting
purposes). tinytheme allows users to easily set a group of graphics parameters in a single function
call, according to a variety of predefined themes.

Examples

# Return a list of existing base and tinyplot graphic params
tpar("las"”, "pch", "facet.bg"”, "facet.cex”, "grid")

# Simple facet plot with these default values
tinyplot(mpg ~ wt, data = mtcars, facet = ~am)



26

# Set params to something new. Similar to graphics::par(), note that we save
# the existing values at the same time by assigning to an object.
op = tpar(
las =1,
pch =2,
facet.bg = "grey90",
facet.cex = 2,
grid = TRUE
)

# Re-plot with these new params
tinyplot(mpg ~ wt, data = mtcars, facet = ~am)

# Reset back to original values
tpar(op)

# Important: tpar() only evalutes parameters that have been passed explicitly
# by the user. So it it should not be used to query and set (restore)
#  parameters that weren't explicitly requested, i.e. tpar() != par().

# Note: The tinyplot-specific parameters can also be be set via ~options”
# with a “tinyplot_*" prefix, which can be convenient for enabling

# different default behaviour at startup time (e.g., via an .Rprofile
# file). Example:

# options(tinyplot_grid = TRUE, tinyplot_facet.bg = "grey90")

type_abline

type_abline Add straight lines to a plot

Description

Add straight lines to a plot

Usage
type_abline(a = 0, b = 1)

Arguments

a,b the intercept and slope, single values.

Examples

mod = Im(mpg ~ hp, data = mtcars)

y = mtcars$mpg

yhat = predict(mod)

tinyplot(y, yhat, xlim = c(@, 40), ylim = c(0, 40))
tinyplot_add(type = type_abline(a = @, b = 1))



type_area 27

type_area Ribbon and area plot types

Description

Type constructor functions for producing polygon ribbons, which define a y interval (usually span-
ning from ymin to ymax) for each x value. Area plots are a special case of ribbon plot where ymin
is set to 0 and ymax is set to y.

Usage

type_area(alpha = NULL)

type_ribbon(alpha = NULL)

Arguments
alpha numeric value between 0 and 1 specifying the opacity of ribbon shading If
no alpha value is provided, then will default to tpar(”ribbon.alpha”) (i.e.,
probably @. 2 unless this has been overridden by the user in their global settings.)
Examples
x = 1:100/10
y = sin(x)
#

## Ribbon plots

# "ribbon" convenience string

tinyplot(x = x, ymin = y-1, ymax = y+1, type
# Same result with type_ribbon()

tinyplot(x = x, ymin = y-1, ymax = y+1, type = type_ribbon())

"ribbon")

# y will be added as a line if it is specified
tinyplot(x = x, y =y, ymin = y-1, ymax = y+1, type = "ribbon")

#
## Area plots

# "area” type convenience string
tinyplot(x, y, type = "area")

# Same result with type_area()
tinyplot(x, y, type = type_area())

# Area plots are often used for time series charts
tinyplot(AirPassengers, type = "area”)



28

type_barplot

type_barplot

Barplot type

Description

Type function for producing barplots. For formulas of type ~ x (without left-hand side) the barplot
visualizes the counts (absolute frequencies) of the levels of x. For formulas of type y ~ x the value of
y within each level of x is visualized, if necessary aggregated using some function (default: mean).

Usage

type_barplot(
width = 5/6,

beside = FALSE,

FUN = NULL,

xlevels = NULL,
drop.zeros = FALSE

Arguments

width

beside

FUN

xlevels

drop.zeros

Examples

numeric, optional vector of bar widths. (The distance between the midpoints of
the bars is always 1.)

logical. In case of a by grouping variable, should bars be juxtaposed? Default is
to use stacked bars instead.

a function to compute the summary statistic for y within each group of x in case
of using a two-sided formula y ~ x (default: mean).

a character or numeric vector specifying in which order the levels of the x vari-
able should be plotted.

logical. Should bars with zero height be dropped? If set to FALSE (default) a
zero height bar is still drawn for which the border lines will still be visible.

# Basic examples of frequency tables (without y variable)
tinyplot(~ cyl, data = mtcars, type = "barplot")

tinyplot(~ cyl | vs, data =
tinyplot(~ cyl | vs, data =
tinyplot(~ cyl | vs, data =

mtcars, type
mtcars, type
mtcars, type

# Note: Above we used automatic argument
# wouldn't work for “width™, since it would conflict with the top-level

# “tinyplot(...

= "barplot")
= "barplot”, beside = TRUE)
= "barplot”, beside = TRUE, fill = 0.2)

passing for ~beside”. But this

, width = <width>)" argument. It's safer to pass these args

# through the ~type_barplot()" functional equivalent.
tinyplot(~ cyl | vs, data = mtcars, fill = 0.2,
= TRUE, drop.zeros = TRUE, width = .65))

type = type_barplot(beside



type_boxplot 29

tinytheme("clean2")

# Example for numeric y aggregated by x (default: FUN = mean) + facets
tinyplot(extra ~ ID | group, facet = "by", data = sleep,
type = "barplot”, beside = TRUE, fill = 0.6)

# Fancy frequency table:
tinyplot(Freq ~ Sex | Survived, facet = ~ Class, data = as.data.frame(Titanic),

type = "barplot”, facet.args = list(nrow = 1), flip = TRUE, fill = @.6)

tinytheme()

type_boxplot Boxplot type

Description

Type function for producing box-and-whisker plots. Arguments are passed to boxplot, although
tinyplot scaffolding allows added functionality such as grouping and faceting. Box-and-whisker
plots are the default plot type if x is a factor and y is numeric.

Usage

type_boxplot(

range = 1.5,
width = NULL,
varwidth = FALSE,
notch = FALSE,
outline = TRUE,
boxwex = 0.8,
staplewex = 0.5,
outwex = 0.5

)
Arguments

range this determines how far the plot whiskers extend out from the box. If range is
positive, the whiskers extend to the most extreme data point which is no more
than range times the interquartile range from the box. A value of zero causes
the whiskers to extend to the data extremes.

width a vector giving the relative widths of the boxes making up the plot.

varwidth if varwidth is TRUE, the boxes are drawn with widths proportional to the square-
roots of the number of observations in the groups.

notch if notch is TRUE, a notch is drawn in each side of the boxes. If the notches of

two plots do not overlap this is ‘strong evidence’ that the two medians differ
(Chambers et al., 1983, p. 62). See boxplot.stats for the calculations used.



30 type_density
outline if outline is not true, the outliers are not drawn (as points whereas S+ uses
lines).
boxwex a scale factor to be applied to all boxes. When there are only a few groups, the
appearance of the plot can be improved by making the boxes narrower.
staplewex staple line width expansion, proportional to box width.
outwex outlier line width expansion, proportional to box width.
Examples

# "boxplot” type convenience string
tinyplot(count ~ spray, data = InsectSprays, type = "boxplot")

# Note: Specifying the type here is redundant. Like base plot, tinyplot
# automatically produces a boxplot if x is a factor and y is numeric
tinyplot(count ~ spray, data = InsectSprays)

# Grouped boxplot example
tinyplot(len ~ dose | supp, data = ToothGrowth, type = "boxplot")

# Use ~type_boxplot()" to pass extra arguments for customization
tinyplot(

len ~ dose | supp, data = ToothGrowth, 1ty = 1,

type = type_boxplot(boxwex = 0.3, staplewex = @, outline = FALSE)
)

type_density Density plot type

Description

Type function for density plots.

Usage

type_density(
bw = "nrde”,
joint.bw = c("mean”, "full", "none"),
adjust =1,

kernel = c("gaussian”, "epanechnikov"”, "rectangular”, "triangular”, "biweight”,

"cosine"”, "optcosine"),
n =512,
alpha = NULL
)



type_density

Arguments

bw

joint.bw

adjust

kernel

alpha

Details

31

the smoothing bandwidth to be used. The kernels are scaled such that this is the
standard deviation of the smoothing kernel. (Note this differs from the reference
books cited below.)

bw can also be a character string giving a rule to choose the bandwidth. See
bw.nrd.

The default, "nrd@”, has remained the default for historical and compatibility
reasons, rather than as a general recommendation, where e.g., "SJ" would rather
fit, see also Venables and Ripley (2002).

The specified (or computed) value of bw is multiplied by adjust.

character string indicating whether (and how) the smoothing bandwidth should
be computed from the joint data distribution when there are multiple subgroups.
The options are "mean” (the default), "full”, and "none”. Also accepts a log-
ical argument, where TRUE maps to "mean” and FALSE maps to "none”. See
the "Bandwidth selection" section below for a discussion of practical consider-
ations.

the bandwidth used is actually adjust*bw. This makes it easy to specify values
like ‘half the default’ bandwidth.

a character string giving the smoothing kernel to be used. This must partially

n on n on n on

match one of "gaussian”, "rectangular”, "triangular”, "epanechnikov”,
n n

"biweight”, "cosine"” or "optcosine”, with default "gaussian”, and may be
abbreviated to a unique prefix (single letter).

"cosine” is smoother than "optcosine”, which is the usual ’cosine’ kernel in
the literature and almost MSE-efficient. However, "cosine" is the version used
by S.

the number of equally spaced points at which the density is to be estimated.
When n > 512, it is rounded up to a power of 2 during the calculations (as fft is
used) and the final result is interpolated by approx. So it almost always makes
sense to specify n as a power of two.

numeric value between O and 1 specifying the opacity of ribbon shading If
no alpha value is provided, then will default to tpar(”ribbon.alpha”) (i.e.,
probably @. 2 unless this has been overridden by the user in their global settings.)

The algorithm used in density.default disperses the mass of the empirical distribution function
over a regular grid of at least 512 points and then uses the fast Fourier transform to convolve this ap-
proximation with a discretized version of the kernel and then uses linear approximation to evaluate
the density at the specified points.

The statistical properties of a kernel are determined by 0% = [ 2K (t)dt which is always = 1
for our kernels (and hence the bandwidth bw is the standard deviation of the kernel) and R(K) =

J K?(t)dt.

MSE-equivalent bandwidths (for different kernels) are proportional to o5 R(K) which is scale in-
variant and for our kernels equal to R(K). This value is returned when give.Rkern = TRUE. See
the examples for using exact equivalent bandwidths.



32 type_density

Infinite values in x are assumed to correspond to a point mass at +/-Inf and the density estimate is
of the sub-density on (-Inf, +Inf).

Bandwidth selection

While the choice of smoothing bandwidth will always stand to affect a density visualization, it
gains an added importance when multiple densities are drawn simultaneously (e.g., for subgroups
with respect to by or facet). Allowing each subgroup to compute its own separate bandwidth
independently offers greater flexibility in capturing the unique characteristics of each subgroup,
particularly when distributions differ substantially in location and/or scale. However, this approach
may overemphasize small random variations and make it harder to visually compare densities across
subgroups. Hence, it is often useful to employ the same ("joint") bandwidth across all subgroups.
The following strategies are available via the joint.bw argument:

e The default joint.bw = "mean” first computes the individual bandwidths for each group but
then computes their mean, weighted by the number of observations in each group. This will
work well when all groups have similar amounts of scatter (similar variances), even when
they have potentially rather different locations. The weighted averaging stabilizes potential
fluctuations in the individual bandwidths, especially when some subgroups are rather small.

Alternatively, joint.bw = "full” can be used to compute the joint bandwidth from the full
joint distribution (merging all groups). This will yield an even more robust bandwidth, espe-
cially when the groups overlap substantially (i.e., have similar locations and scales). However,
it may lead to too large bandwidths and thus too much smoothing, especially when the loca-
tions of the groups differ substantially.

Finally, joint.bw = "none" disables the joint bandwidth so that each group just employs its
individual bandwidth. This is often the best choice if the amounts of scatter differ substantially
between the groups, thus necessitating different amounts of smoothing.

Titles

This tinyplot method for density plots differs from the base plot.density function in its treatment
of titles. The x-axis title displays only the variable name, omitting details about the number of
observations and smoothing bandwidth. Additionally, the main title is left blank by default for a
cleaner appearance.

Examples

# "density” type convenience string
tinyplot(~Sepal.Length, data = iris, type = "density")

# grouped density example
tinyplot(~Sepal.Length | Species, data = iris, type = "density")

# use “bg = "by"" (or, equivalent “fill = "by"") to get filled densities
tinyplot(~Sepal.Length | Species, data = iris, type = "density"”, fill = "by")

# use "“type_density()" to pass extra arguments for customization
tinyplot(

~Sepal.Length | Species, data = iris,

type = type_density(bw = "SJ"),



type_errorbar 33

main = "Bandwidth computed using Sheather & Jones (1991)"
)

# The default for grouped density plots is to use the mean of the
# individual subgroup bandwidths (weighted by group size) as the
# joint bandwidth. Alternatively, the bandwidth from the "full”

# data or separate individual bandwidths ("none”) can be used.
tinyplot(~Sepal.Length | Species, data = iris,

ylim = c(@, 1.25), type = "density") # mean (default)
tinyplot_add(joint.bw = "full”, 1ty = 2) # full data
tinyplot_add(joint.bw = "none”, 1ty = 3) # none (individual)

legend("topright”, c("Mean”, "Full”, "None"), 1ty = 1:3, bty = "n", title = "Joint BW")

type_errorbar Error bar and pointrange plot types

Description

Type function(s) for producing error bar and pointrange plots.

Usage

type_errorbar(length = 0.05)

type_pointrange()

Arguments

length length of the edges of the arrow head (in inches).

Examples

mod = Im(mpg ~ wt * factor(am), mtcars)
coefs = data.frame(names(coef(mod)), coef(mod), confint(mod))
colnames(coefs) = c("term”, "est”, "lwr", "upr")

op = tpar(pch = 19)

# "errorbar” and "pointrange" type convenience strings
with(
coefs,
tinyplot(x = term, y = est, ymin = lwr, ymax = upr, type = "errorbar")
)
with(
coefs,
tinyplot(x = term, y = est, ymin = lwr, ymax = upr, type = "pointrange"”)

)

# Use "“type_errorbar()” to pass extra arguments for customization



34 type_function

with(
coefs,

tinyplot(x = term, y = est, ymin = lwr, ymax = upr, type = type_errorbar(length = 0.2))
)

tpar(op)

type_function Plot a function

Description

Plot a function

Usage

type_function(fun = dnorm, args = list(), n =101, ...)
Arguments

fun Function of x to plot. Defaults to dnorm.

args List of additional arguments to be passed to fun.

n Number of points to interpolate on the x axis.

Additional arguments are passed to the 1ines () function, ex: type="p", col="pink".

Details

When using type_function() in a tinyplot() call, the x value indicates the range of values to
plot on the x-axis.

Examples

# Plot the normal density
tinyplot(x = -4:4, type = type_function(dnorm))

# Extra arguments for the function to plot
tinyplot(x = -1:10, type = type_function(
fun = dnorm, args = list(mean = 3)

)

# Additional arguments are passed to the “lines()” function.
tinyplot(x = -4:4, type = type_function(

fun = dnorm,

col = "pink", type = "p", pch =3
))

# Custom function example



type_glm 35

# (Here using the “\()" anonymous function syntax introduced in R 4.1.0)
tinyplot(x = -4:4, type = type_function(fun = \(x) 0.5 * exp(-abs(x))))

type_glm Generalized linear model plot type

Description

Type function for plotting a generalized model fit. Arguments are passed to glm.

Usage

type_glm(family = "gaussian”, se = TRUE, level = 0.95, type = "response”)

Arguments
family a description of the error distribution and link function to be used in the model.
For glm this can be a character string naming a family function, a family function
or the result of a call to a family function. For glm. fit only the third option is
supported. (See family for details of family functions.)
se logical. If TRUE, confidence intervals are drawn.
level the confidence level required.
type character, partial matching allowed. Type of weights to extract from the fitted
model object. Can be abbreviated.
Examples

# "glm" type convenience string
tinyplot(am ~ mpg, data = mtcars, type = "glm")

# Use ~type_glm()" to pass extra arguments for customization
tinyplot(am ~ mpg, data = mtcars, type = type_glm(family = "binomial”))

type_histogram Histogram plot type

Description

Type function for histogram plots. type_hist is an alias for type_histogram.



36 type_histogram

Usage

type_histogram(
breaks = "Sturges",
freq = NULL,
right = TRUE,
free.breaks = FALSE,
drop.zeros = TRUE

)

type_hist(
breaks = "Sturges"”,
freq = NULL,
right = TRUE,
free.breaks = FALSE,
drop.zeros = TRUE

Arguments

breaks Passed to hist. One of:

* avector giving the breakpoints between histogram cells,
* a function to compute the vector of breakpoints,
* asingle number giving the number of cells for the histogram,

¢ acharacter string naming an algorithm to compute the number of cells (see
‘Details’ of hist),

* afunction to compute the number of cells. In the last three cases the number
is a suggestion only; as the breakpoints will be set to pretty values, the
number is limited to 1e6 (with a warning if it was larger). If breaks is a
function, the x vector is supplied to it as the only argument (and the number
of breaks is only limited by the amount of available memory).

freq logical; if TRUE, the histogram graphic is a representation of frequencies, the
counts component of the result; if FALSE, probability densities, component
density, are plotted (so that the histogram has a total area of one). Defaults
to TRUE if and only if breaks are equidistant (and probability is not speci-
fied).

right logical; if TRUE, the histogram cells are right-closed (left open) intervals.

free.breaks Logical indicating whether the breakpoints should be computed separately for
each group or facet? Default is FALSE, meaning that the breakpoints are com-
puted from the full dataset; thus ensuring common bin widths across each group/facet.
Can also use free as an acceptable argument alias. Ignored if there are no
groups and/or facets.

drop.zeros Logical indicating whether bins with zero counts should be dropped before plot-
ting. Default is TRUE. Note that switching to FALSE may interfere with faceted
plot behaviour if facet.args = list(free), since the x variable is effectively
recorded over the full range of the x-axis (even if it does not extend over this
range for every group).



type_hline

Examples

# "histogram”/"hist"” type convenience string(s)
tinyplot(Nile, type = "histogram”)

# Use ~type_histogram()"~ to pass extra arguments for customization
tinyplot(Nile, type = type_histogram(breaks = 30))

tinyplot(Nile, type = type_histogram(breaks = 30, freq = FALSE))

# etc.

# Grouped histogram example
tinyplot(
~Petal .Width | Species,
type = "histogram”,
data = iris

)

# Faceted version

tinyplot(
~Petal.Width, facet = ~Species,
type = "histogram”,
data = iris

)

# For visualizing faceted histograms across varying scales, you may also wish
# to impose free histogram breaks too (i.e., calculate breaks separately for
# each group). Compare:

# free facet scales + shared histogram breaks, versus...
tinyplot(

~Petal.Width, facet = ~Species,

facet.args = list(free = TRUE),

type = type_histogram(),

data = iris

37

)
# ... free facet scales + free histogram breaks
tinyplot(
~Petal.Width, facet = ~Species,
facet.args = list(free = TRUE),
type = type_histogram(free = TRUE),
data = iris
)
type_hline Trace a horizontal line on the plot
Description

Trace a horizontal line on the plot



38 type_jitter

Usage

type_hline(h = 0)

Arguments
h y-value(s) for horizontal line(s). Numeric of length 1 or equal to the number of
facets.
Examples
tinyplot(mpg ~ hp | factor(cyl), facet = ~ factor(cyl), data = mtcars)

tinyplot_add(type = type_hline(h = 12), col = "pink", 1ty = 3, lwd = 3)

type_jitter Jittered points plot type

Description

Type function for plotting jittered points. Arguments are passed to jitter.

Usage

type_jitter(factor = 1, amount = NULL)

Arguments
factor numeric.
amount numeric; if positive, used as amount (see below), otherwise, if = @ the default is
factor x z/50.
Default (NULL): factor * d/5 where d is about the smallest difference between
x values.
Details

The result, say r,is r <- x + runif(n, -a, a) where n <- length(x) and a is the amount argument
(if specified).

Let z <- max(x) - min(x) (assuming the usual case). The amount a to be added is either provided
as positive argument amount or otherwise computed from z, as follows:

If amount == @, we set a <- factor *x z/50 (same as S).

If amount is NULL (default), we set a <- factor * d/5 where d is the smallest difference between
adjacent unique (apart from fuzz) x values.



type_lines 39

Examples

# "jitter" type convenience string
tinyplot(Sepal.Length ~ Species, data = iris, type = "jitter")

# Use “type_jitter()" to pass extra arguments for customization
tinyplot(Sepal.Length ~ Species, data = iris, type = type_jitter(factor = 0.5))

type_lines Lines plot type

Description

Type function for plotting lines.

Usage

type_lines(type = "1")

Arguments
type 1-character string giving the type of plot desired. The following values are pos-
sible, for details, see plot: "p" for points, "1" for lines, "b" for both points and
lines, "c" for empty points joined by lines, "o" for overplotted points and lines,
"s" and "S" for stair steps and "h" for histogram-like vertical lines. Finally, "n"
does not produce any points or lines.
Examples

# "1" type convenience character string
tinyplot(circumference ~ age | Tree, data = Orange, type = "1")

# Use “type_lines()™ to pass extra arguments for customization
tinyplot(circumference ~ age | Tree, data = Orange, type = type_lines(type = "s"))

type_1m Linear model plot type

Description

Type function for plotting a linear model fit. Arguments are passed to 1m.

Usage

type_lm(se = TRUE, level = 0.95)



40 type_loess

Arguments
se logical. If TRUE, confidence intervals are drawn.
level the confidence level required.

Examples

# "1lm" type convenience string
tinyplot(Sepal.Width ~ Petal.Width, data = iris, type = "1m")

# Grouped model fits (here: illustrating an example of Simpson's paradox)
tinyplot(Sepal.Width ~ Petal.Width | Species, data = iris, type = "1m")
tinyplot_add(type = "p")

# Use “type_lm()" to pass extra arguments for customization
tinyplot(Sepal.Width ~ Petal.Width, data = iris, type = type_lm(level = 0.8))

type_loess Local polynomial regression plot type

Description

Type function for plotting a LOESS (LOcal regrESSion) fit. Arguments are passed to loess.

Usage
type_loess(
span = 0.75,
degree = 2,
family = "gaussian”,
control = loess.control(),
se = TRUE,
level = 0.95
)
Arguments
span the parameter o which controls the degree of smoothing.
degree the degree of the polynomials to be used, normally 1 or 2. (Degree O is also
allowed, but see the ‘Note’.)
family if "gaussian” fitting is by least-squares, and if "symmetric” a re-descending
M estimator is used with Tukey’s biweight function. Can be abbreviated.
control control parameters: see loess.control.
se logical. If TRUE (the default), confidence intervals are drawn.

level the confidence level required if se = TRUE. Default is 0.95.



type_points 41

Examples

# "loess"” type convenience string
tinyplot(dist ~ speed, data = cars, type = "loess"”)

# Use ~type_loess()” to pass extra arguments for customization
tinyplot(dist ~ speed, data = cars, type = type_loess(span = 0.5, degree = 1))

type_points Points plot type

Description

Type function for plotting points, i.e. a scatter plot.

Usage

type_points()

Examples

# "p" type convenience character string
tinyplot(Sepal.Length ~ Petal.Length, data = iris, type = "p")

# Same result with type_points()
tinyplot(Sepal.Length ~ Petal.lLength, data = iris, type = type_points())

# Note: Specifying the type here is redundant. Like base plot, tinyplot
# automatically produces a scatter plot if x and y are numeric
tinyplot(Sepal.Length ~ Petal.Length, data = iris)

# Grouped scatter plot example
tinyplot(Sepal.Length ~ Petal.Length | Species, data = iris)

# Continuous grouping (with gradient legend)
tinyplot(Sepal.Length ~ Petal.Length | Sepal.Width, data = iris, pch = 19)

type_polygon Polygon plot type

Description

Type function for plotting polygons. Arguments are passed to polygon.

Usage

type_polygon(density = NULL, angle = 45)



42

type_polypath

Arguments
density the density of shading lines, in lines per inch. The default value of NULL means
that no shading lines are drawn. A zero value of density means no shading
nor filling whereas negative values and NA suppress shading (and so allow color
filling).
angle the slope of shading lines, given as an angle in degrees (counter-clockwise).
Examples

# "polygon” type convenience character string
tinyplot(1:9, c(2,1,2,1,NA,2,1,2,1), type = "polygon")

# Use "“type_polygon()~ to pass extra arguments for customization

tinyplot(1:9, c(2,1,2,1,NA,2,1,2,1), type = type_polygon(density = c(10, 20)))

type_polypath Polypath polygon type

Description

Type function for plotting polygons. Arguments are passed to polypath.

Usage

type_polypath(rule = "winding")

Arguments

rule character value specifying the path fill mode: either "winding"” or "evenodd”.

Examples

# "polypath” type convenience character string

tinyplot(
c(.1, .1, .6, .6, NA, .4, .4, .9, .9),
c(.1, .6, .6, .1, NA, .4, .9, .9, .4),
type = "polypath”, fill = "grey"”

)

# Use ~type_polypath()™ to pass extra arguments for customization
tinyplot(

c(.1, .1, .6, .6, NA, .4, .4, .9, .9),

c(.1, .6, .6, .1, NA, .4, .9, .9, .4),

type = type_polypath(rule = "evenodd"), fill = "grey”



type_qq 43

type_qq Quantile-Quantile plot (QQ)

Description

Plots the theoretical quantiles of x on the horizontal axis against observed values of x on the vertical
axis.

Usage

type_qq(distribution = gnorm)

Arguments

distribution Distribution function to use.

Examples

tinyplot(~mpg, data

mtcars, type = type_qq())

# suppress the line
tinyplot(~mpg, data = mtcars, 1ty = 0, type = type_qq())

type_rect Rectangle plot type

Description

Type function for plotting rectangles.

Usage

type_rect()

Details

Contrary to base rect, rectangles in tinyplot must be specified using the xmin, ymin,xmax, and ymax
arguments.



44
Examples
i = 4%(0:10)

# "rect” type convenience character string
tinyplot(

xmin = 100+i, ymin = 300+i, xmax = 150+i, ymax = 380+i,

by = i, fill = 0.2,
type = "rect”
)

# Same result with type_rect()
tinyplot(

xmin = 100+i, ymin = 300+i, xmax = 150+i, ymax = 380+i,

by = i, fill = 0.2,
type = type_rect()
)

type_ridge

type_ridge Ridge plot type

Description

Type function for producing ridge plots (also known as joy plots), which display density distri-
butions for multiple groups with vertical offsets. This function uses tinyplot scaffolding, which

enables added functionality such as grouping and faceting.

The line color is controlled by the col argument in the tinyplot() call. The fill color is controlled

by the bg argument in the tinyplot () call.

Usage

type_ridge(
scale = 1.5,
joint.max = c("all”, "facet”, "by"),
breaks = NULL,
probs = NULL,
ylevels = NULL,
bw = "nrde"”,
joint.bw = c("mean”, "full”, "none"),
adjust = 1,

kernel = c("gaussian”, "epanechnikov”, "rectangular”, "triangular”, "biweight",

"cosine"”, "optcosine"),
n =512,
gradient = FALSE,
raster = FALSE,
col = NULL,
alpha = NULL



type_ridge

Arguments

scale

joint.max

breaks

probs

ylevels

bw

joint.bw

adjust

kernel

45

Numeric. Controls the scaling factor of each plot. Values greater than 1 means
that plots overlap.

character indicating how to scale the maximum of the densities: The default
"all” indicates that all densities are scaled jointly relative to the same maxi-
mum so that the areas of all densities are comparable. Alternatively, "facet”
indicates that the maximum is computed within each facet so that the areas of
the densities are comparable within each facet but not necessarily across facets.
Finally, "by" indicates that each row (in each facet) is scaled separately, so that
the areas of the densities for by groups in the same row are comparable but not
necessarily across rows.

Numeric. If a color gradient is used for shading, the breaks between the colors
can be modified. The default is to use equidistant breaks spanning the range of
the x variable.

Numeric. Instead of specifying the same breaks on the x-axis for all groups, it is
possible to specify group-specific quantiles at the specified probs. The quantiles
are computed based on the density (rather than the raw original variable). Only
one of breaks or probs must be specified.

a character or numeric vector specifying in which order the levels of the y-
variable should be plotted.

the smoothing bandwidth to be used. The kernels are scaled such that this is the
standard deviation of the smoothing kernel. (Note this differs from the reference
books cited below.)

bw can also be a character string giving a rule to choose the bandwidth. See
bw.nrd.

The default, "nrd@”, has remained the default for historical and compatibility
reasons, rather than as a general recommendation, where e.g., "SJ" would rather
fit, see also Venables and Ripley (2002).

The specified (or computed) value of bw is multiplied by adjust.

character string indicating whether (and how) the smoothing bandwidth should
be computed from the joint data distribution. The default of "mean” will com-
pute the joint bandwidth as the mean of the individual subgroup bandwidths
(weighted by their number of observations). Choosing "full"” will result in a
joint bandwidth computed from the full distribution (merging all subgroups).
For "none” the individual bandwidth will be computed independently for each
subgroup. Also accepts a logical argument, where TRUE maps to "mean” and
FALSE maps to "none”. See type_density for some discussion of practical
considerations.

the bandwidth used is actually adjustxbw. This makes it easy to specify values
like ‘half the default’ bandwidth.

a character string giving the smoothing kernel to be used. This must partially
match one of "gaussian”, "rectangular”, "triangular”, "epanechnikov”,
"biweight”, "cosine"” or "optcosine”, with default "gaussian", and may be

abbreviated to a unique prefix (single letter).



46 type_ridge

"cosine” is smoother than "optcosine”, which is the usual ’cosine’ kernel in
the literature and almost MSE-efficient. However, "cosine" is the version used
by S.

n the number of equally spaced points at which the density is to be estimated.
When n > 512, it is rounded up to a power of 2 during the calculations (as fft is
used) and the final result is interpolated by approx. So it almost always makes
sense to specify n as a power of two.

gradient Logical or character. Should a gradient fill be used to shade the area under the
density? If a character specification is used, then it can either be of length 1 and
specify the palette to be used with gradient = TRUE corresponding to gradient
= "viridis". If a character vector of length greater than 1 is used, then it should
specify the colors in the palette, e.g., gradient = hcl.colors(512).

raster Logical. Should the gradient fill be drawn using rasterImage? Defaults to
FALSE, in which case the gradient fill will instead be drawn using polygon.
See the Technical note on gradient fills section below.

col Character string denoting the outline (border) color for all of the ridge densi-
ties. Note that a singular value is expected; if multiple colors are provided then
only the first will be used. This argument is mostly useful for the aesthetic ef-
fect of drawing a common outline color in combination with gradient fills. See
Examples.

alpha Numeric in the range [0, 1] for adjusting the alpha transparency of the density
fills. In most cases, will default to a value of 1, i.e. fully opaque. But for some by
grouped plots (excepting the special cases where by==y or by==x), will default
to 0.6.

Technical note on gradient fills

tinyplot uses two basic approaches for drawing gradient fills in ridge line plots, e.g., if type_ridge(gradient
=TRUE).

The first (and default) polygon-based approach involves dividing up the main density region into
many smaller polygons along the x-axis. Each of these smaller polygons inherits a different color
"segment" from the underlying palette swatch, which in turn creates the effect of a continuous gra-
dient when they are all plotted together. Internally, this polygon-based approach is vectorized (i.e.,
all of the sub-polygons are plotted simultaneously). It is thus efficient from a plotting perspective
and generally also performs well from an aesthetic perspective. However, it can occasionally pro-
duce undesirable plotting artifacts on some graphics devices—e.g., thin but visible vertical lines—if
alpha transparency is being used at the same time.

For this reason, we also offer an alternative raster-based approach for gradient fills that users can
invoke via type_ridge(gradient = TRUE, raster = TRUE). The essential idea is that we coerce
the density polygon into a raster representation (using rasterImage) and achieve the gradient effect
via color interpolation. The trade-off this time is potential smoothness artifacts around the top of
the ridge densities at high resolutions, since we have converted a vector object into a raster object.

Again, we expect that the choice between these two approaches will only matter for ridge plots that
combine gradient fills with alpha transparency (and on certain graphics devices). We recommend
that users experiment to determine which approach is optimal for their device.



type_ridge 47

Examples

aq = transform(
airquality,
Month = factor(month.abb[Month], levels = month.abb[5:9]),
Month2 = factor(month.name[Month], levels = month.name[5:9]),
Late = ifelse(Day > 15, "Late", "Early")
)

# default ridge plot (using the "ridge" convenience string)
tinyplot(Month ~ Temp, data = aq, type = "ridge")

# for ridge plots, we recommend pairing with the dedicated theme(s), which
# facilitate nicer y-axis labels, grid lines, etc.

tinytheme("ridge")
tinyplot(Month ~ Temp, data = aq, type = "ridge")

tinytheme("ridge2") # removes the plot frame (but keeps x-axis line)
tinyplot(Month ~ Temp, data = aqg, type = "ridge")

# the "ridge(2)" themes are especially helpful for long y labels, due to

# dyanmic plot adjustment

tinyplot(Month2 ~ Temp, data = aq, type = "ridge")

# pass customization arguments through type_ridge()... for example, use

# the scale argument to change/avoid overlap of densities (more on scaling
# further below)

tinyplot(Month ~ Temp, data = aq, type = type_ridge(scale = 1))

## by grouping is also supported. two special cases of interest:

# 1) by == y (color by y groups)
tinyplot(Month ~ Temp | Month, data = aq, type = "ridge")

# 2) by == x (gradient coloring along x)
tinyplot(Month ~ Temp | Temp, data = aq, type = "ridge")

# aside: pass explicit “type_ridge(col = <col>)" arg to set a different
# border color

tinyplot(Month ~ Temp | Temp, data = aq, type = type_ridge(col = "white"))

# gradient coloring along the x-axis can also be invoked manually without
# a legend (the next two tinyplot calls are equivalent)

# tinyplot(Month ~ Temp, data = aq, type = type_ridge(gradient = "agsunset"))
tinyplot(Month ~ Temp, data = aq, type = type_ridge(gradient = TRUE))

# aside: when combining gradient fill with alpha transparency, it may be
# better to use the raster-based approach (test on your graphics device)

tinyplot(Month ~ Temp, data = aq,



48

type = type_ridge(gradient = TRUE, alpha = 0.5),
main = "polygon fill (default)")
tinyplot(Month ~ Temp, data = aq,
type = type_ridge(gradient = TRUE, alpha = 0.5, raster = TRUE),
main = "raster fill")

# highlighting only the center 50% of the density (i.e., 25%-75% quantiles)
tinyplot(Month ~ Temp, data = aq, type = type_ridge(

gradient = hcl.colors(3, "Dark Mint")[c(2, 1, 2)],

probs = c(0.25, 0.75), col = "white"))

# highlighting the probability distribution by color gradient
# (darkest point = median)
tinyplot(Month ~ Temp, data = aq, type = type_ridge(
gradient = hcl.colors(250, "Dark Mint")[c(250:1, 1:250)],
probs = 0:500/500))

# faceting also works, although we recommend switching (back) to the "ridge”
# theme for faceted ridge plots

tinytheme("ridge")
tinyplot(Month ~ Ozone, facet = ~ Late, data = aq,
type = type_ridge(gradient = TRUE))

## use the joint.max argument to vary the maximum density used for
## determining relative scaling...

# jointly across all densities (default) vs. per facet

tinyplot(Month ~ Temp, facet = ~ Late, data = aq,
type = type_ridge(scale = 1))
tinyplot(Month ~ Temp, facet = ~ Late, data = aq,

type = type_ridge(scale = 1, joint.max = "facet"))

# jointly across all densities (default) vs. per by row
tinyplot(Month ~ Temp | Late, data = aq,

type = type_ridge(scale = 1))
tinyplot(Month ~ Temp | Late, data = aq,

type = type_ridge(scale = 1, joint.max = "by"))

# restore the default theme
tinytheme()

type_rug

type_rug Add a rug to a plot

Description

Adds a rug representation (1-d plot) of the data to the plot.



type_rug 49

Usage

type_rug(
ticksize = 0.03,
side = 1,
quiet = getOption("warn") < 0,
jitter = FALSE,
amount = NULL

)
Arguments

ticksize The length of the ticks making up the ‘rug’. Positive lengths give inwards ticks.

side On which side of the plot box the rug will be plotted. Normally 1 (bottom) or 3

(top).

quiet logical indicating if there should be a warning about clipped values.

jitter Logical. Add jittering to separate ties? Default is FALSE.

amount Numeric. Amount of jittering (see jitter). Only used if jitter is TRUE.
Details

This function should only be used as part of tinyplot_add(), i.e. adding to an existing plot.

In most cases, determining which variable receives the rug representation will be based on the side
argument (i.e., x-variable if side is 1 or 3, and y-variable if side is 2 or 4). An exception is if the
preceding plot type was either "density” or "histogram”; for these latter cases, the x-variable
will always be used. See Examples.

Examples

tinyplot(~wt | am, data = mtcars, type = "density", facet = "by"”, fill = "by")
tinyplot_add(type = "rug")

# use type_rug() to pass extra options

tinyplot_add(type = type_rug(side = 3, ticksize = 0.05))

# For ties, use jittering

tinyplot(eruptions ~ waiting, data = faithful, type = "1m")
tinyplot_add(type = type_rug(jitter = TRUE, amount = 0.3))
tinyplot_add(type = type_rug(jitter = TRUE, amount = 0.1, side = 2))
# Add original points just for reference

tinyplot_add(type = "p")



50 type_spineplot

type_segments Line segments plot type

Description

Type function for plotting line segments.

Usage

type_segments()

Details
Contrary to base segments, line segments in tinyplot must be specified using the xmin, ymin,xmax,

and ymax arguments.

Examples

# "segments” type convenience character string

tinyplot(
xmin = ¢c(0,.1), ymin = c(.2,1), xmax = c(1,.9), ymax = c(.75,0),
type = "segments”

)

# Same result with type_segments()
tinyplot(
xmin = ¢c(0,.1), ymin = c(.2,1), xmax
type = type_segments()
)

c(1,.9), ymax = c(.75,0),

type_spineplot Spineplot and spinogram types

Description

Type function(s) for producing spineplots and spinograms, which are modified versions of his-
tograms or mosaic plots, and particularly useful for visualizing factor variables. Note that tinyplot
defaults to type_spineplot() if y is a factor variable.



type_spineplot

51

Usage
type_spineplot(
breaks = NULL,
tol.ylab = 0.05,
of f = NULL,
ylevels = NULL,
col = NULL,
xaxlabels = NULL,
yaxlabels = NULL,
weights = NULL
)
Arguments
breaks if the explanatory variable is numeric, this controls how it is discretized. breaks
is passed to hist and can be a list of arguments.
tol.ylab convenience tolerance parameter for y-axis annotation. If the distance between
two labels drops under this threshold, they are plotted equidistantly.
of f vertical offset between the bars (in per cent). It is fixed to @ for spinograms and
defaults to 2 for spine plots.
ylevels a character or numeric vector specifying in which order the levels of the depen-
dent variable should be plotted.
col a vector of fill colors of the same length as levels(y). The default is to call

gray.colors.

xaxlabels, yaxlabels

weights

Examples

# "spineplot”
tinyplot(Species ~ Sepal.Width, data =

character vectors for annotation of x and y axis. Default to levels(y) and
levels(x), respectively for the spine plot. For xaxlabels in the spinogram,
the breaks are used.

numeric. A vector of frequency weights for each observation in the data. If
NULL all weights are implicitly assumed to be 1. If x is already a 2-way table,
the weights are ignored.

type convenience string

iris, type = "spineplot”)

# Aside: specifying the type is redundant for this example, since tinyplot()
# defaults to "spineplot” if y is a factor (just like base plot).

tinyplot(Species ~ Sepal.Width, data =

iris)

# Use ~type_spineplot()™ to pass extra arguments for customization

tinyplot(Species ~ Sepal.Width, data = iris, type = type_spineplot(breaks

=4)

p = palette.colors(3, "Pastel 1")

tinyplot(Species ~ Sepal.Width, data =

rm(p)

iris, type = type_spineplot(breaks = 4, col = p))



52 type_spline

# More idiomatic tinyplot way of drawing the previous plot: use y == by

tinyplot(
Species ~ Sepal.Width | Species, data = iris, type = type_spineplot(breaks = 4),
palette = "Pastel 1", legend = FALSE

)

# Grouped and faceted spineplots
ttnc = as.data.frame(Titanic)
tinyplot(

Survived ~ Sex, facet = ~ Class, data = ttnc,
type = type_spineplot(weights = ttnc$Freq)

)
# For grouped "by" spineplots, it's better visually to facet as well
tinyplot(

Survived ~ Sex | Class, facet = "by", data = ttnc,

type = type_spineplot(weights = ttnc$Freq)
)
# Fancier version. Note the smart inheritance of spacing etc.
tinyplot(

Survived ~ Sex | Class, facet = "by", data = ttnc,

type = type_spineplot(weights = ttnc$Freq),

palette = "Dark 2", facet.args = list(nrow = 1), axes = "t"
)

# Note: It's possible to use "by" on its own (without faceting), but the
# overlaid result isn't great. We will likely overhaul this behaviour in a
# future version of tinyplot...
tinyplot(Survived ~ Sex | Class, data = ttnc,

type = type_spineplot(weights = ttnc$Freq), alpha = 0.3
)

type_spline Spline plot type

Description

Type function for plotting a cubic (or Hermite) spline interpolation. Arguments are passed to
spline; see this latter function for default argument values.

Usage

type_spline(
n = NULL,
method = "fmm",
xmin = NULL,



type_spline 53

xmax = NULL,
xout = NULL,
ties = mean
)
Arguments
n if xout is left unspecified, interpolation takes place at n equally spaced points
spanning the interval [xmin, xmax].
method specifies the type of spline to be used. Possible values are "fmm"”, "natural”,
"periodic”, "monoH.FC" and "hyman". Can be abbreviated.
Xmin, xmax left-hand and right-hand endpoint of the interpolation interval (when xout is
unspecified).
xout an optional set of values specifying where interpolation is to take place.
ties handling of tied x values. The string "ordered” or a function (or the name of
a function) taking a single vector argument and returning a single number or a
length-2 1list of both, see approx and its ‘Details’ section, and the example
below.
Details

The inputs can contain missing values which are deleted, so at least one complete (x, y) pair is
required. If method = "fmm", the spline used is that of Forsythe, Malcolm and Moler (an exact
cubic is fitted through the four points at each end of the data, and this is used to determine the end
conditions). Natural splines are used when method = "natural”, and periodic splines when method
= "periodic”.

The method "monoH.FC" computes a monotone Hermite spline according to the method of Fritsch
and Carlson. It does so by determining slopes such that the Hermite spline, determined by (;, y;, m;),
is monotone (increasing or decreasing) iff the data are.

Method "hyman” computes a monotone cubic spline using Hyman filtering of an method = "fmm"
fit for strictly monotonic inputs.

These interpolation splines can also be used for extrapolation, that is prediction at points outside
the range of x. Extrapolation makes little sense for method = "fmm"; for natural splines it is linear
using the slope of the interpolating curve at the nearest data point.

Examples

# "spline” type convenience string
tinyplot(dist ~ speed, data = cars, type = "spline")

# Use "“type_spline()” to pass extra arguments for customization
tinyplot(dist ~ speed, data = cars, type = type_spline(method = "natural”, n = 25),
add = TRUE, 1ty = 2)



54 type_summary

type_summary Plot summary values of y at unique values of x

Description

Applies a summary function to y along unique values of x. This is useful, say, for quickly plotting
mean values of your dataset. Internally, type_summary() applies a thin wrapper around ave and
then passes the result to type_lines for drawing.

Usage
type_summary(fun = mean, ...)
Arguments
fun summarizing function. Should be compatible with ave. Defaults to mean.
Additional arguments are passed to the 1ines () function, ex: type="p", col="pink".
See Also

ave which performs the summarizing (averaging) behind the scenes.

Examples

# Plot the mean chick weight over time
tinyplot(weight ~ Time, data = ChickWeight, type = type_summary())

# mean is the default function, so the above is equivalent to
tinyplot(weight ~ Time, data = ChickWeight, type = type_summary(mean))

# Plot the median instead
tinyplot(weight ~ Time, data = ChickWeight, type = type_summary(median))

# Works with groups and/or facets too
tinyplot(weight ~ Time | Diet, facet = "by", data = ChickWeight, type = type_summary())

# Custom/complex function example
tinyplot(

weight ~ Time | Diet, facet = "by", data = ChickWeight,

type = type_summary(function(y) quantile(y, probs = @.9)/max(y))
)



type_text

55

type_text

Text annotations plot type

Description

Type function for adding text annotations to a plot. This function allows you to draw text at specified

(x,y) coordinates.

Usage

type_text(
labels,
adj = NULL,
pos = NULL,
offset = 0.5,
vfont = NULL,
font = NULL

Arguments

labels

adj

pos

offset

vfont

font

Examples

Character vector of length 1 or of the same length as the number of X,y coordi-
nates.

one or two values in [0, 1] which specify the x (and optionally y) adjustment
(‘justification’) of the labels, with O for left/bottom, 1 for right/top, and 0.5 for
centered. On most devices values outside [0, 1] will also work. See below.

a position specifier for the text. If specified this overrides any adj value given.
Values of 1, 2, 3 and 4, respectively indicate positions below, to the left of, above
and to the right of the specified (x,y) coordinates.

when pos is specified, this value controls the distance (‘offset’) of the text label
from the specified coordinate in fractions of a character width.

NULL for the current font family, or a character vector of length 2 for Hershey
vector fonts. The first element of the vector selects a typeface and the second
element selects a style. Ignored if 1labels is an expression.

Font to be used, following graphics: :par()

tinyplot(mpg ~ hp | factor(cyl),

data = mtcars,

type = type_text(

labels = row.

font = 2,
adj = 0))

names(mtcars),



56 type_vline

type_vline Trace a vertical line on the plot

Description

Trace a vertical line on the plot

Usage

type_vline(v = 0)

Arguments
v x-value(s) for vertical line(s). Numeric of length 1 or equal to the number of
facets.
Examples

tinyplot(mpg ~ hp, data = mtcars)
tinyplot_add(type = type_vline(150))

# facet-specify location and colors

cols = c("black”, "green"”, "orange")

tinyplot(mpg ~ hp | factor(cyl), facet = ~ factor(cyl), data = mtcars, col = cols)
tinyplot_add(type = type_vline(v = c(100, 150, 200)), 1ty = 3, lwd = 3)



	draw_legend
	get_saved_par
	tinyplot
	tinyplot_add
	tinytheme
	tpar
	type_abline
	type_area
	type_barplot
	type_boxplot
	type_density
	type_errorbar
	type_function
	type_glm
	type_histogram
	type_hline
	type_jitter
	type_lines
	type_lm
	type_loess
	type_points
	type_polygon
	type_polypath
	type_qq
	type_rect
	type_ridge
	type_rug
	type_segments
	type_spineplot
	type_spline
	type_summary
	type_text
	type_vline

