
Package: etwfe (via r-universe)
August 25, 2024

Type Package

Title Extended Two-Way Fixed Effects

Version 0.4.0

Date 2024-02-26

Description Convenience functions for implementing extended two-way
fixed effect regressions a la Wooldridge (2021, 2022)
<doi:10.2139/ssrn.3906345>, <doi:10.2139/ssrn.4183726>.

License MIT + file LICENSE

Imports fixest (>= 0.11.2), stats, data.table, Formula,
marginaleffects (>= 0.10.0)

Suggests did, modelsummary, gt, ggplot2, knitr, rmarkdown, tinytest

Encoding UTF-8

RoxygenNote 7.3.1

URL https://grantmcdermott.com/etwfe/

BugReports https://github.com/grantmcdermott/etwfe/issues

VignetteBuilder knitr

Roxygen list(markdown = TRUE)

Repository https://grantmcdermott.r-universe.dev

RemoteUrl https://github.com/grantmcdermott/etwfe

RemoteRef HEAD

RemoteSha ac7fe39832d57315e5a038c4f5dbd4164538e31a

Contents
emfx . 2
etwfe . 5

Index 11

1

https://doi.org/10.2139/ssrn.3906345
https://doi.org/10.2139/ssrn.4183726
https://grantmcdermott.com/etwfe/
https://github.com/grantmcdermott/etwfe/issues

2 emfx

emfx Post-estimation treatment effects for an ETWFE regressions.

Description

Post-estimation treatment effects for an ETWFE regressions.

Usage

emfx(
object,
type = c("simple", "group", "calendar", "event"),
by_xvar = "auto",
collapse = "auto",
post_only = TRUE,
...

)

Arguments

object An etwfe model object.
type Character. The desired type of post-estimation aggregation.
by_xvar Logical. Should the results account for heterogeneous treatment effects? Only

relevant if the preceding etwfe call included a specified xvar argument, i.e.
interacted categorical covariate. The default behaviour ("auto") is to automati-
cally estimate heterogeneous treatment effects for each level of xvar if these are
detected as part of the underlying etwfe model object. Users can override by
setting to either FALSE or TRUE. See the section on Heterogeneous treatment
effects below.

collapse Logical. Collapse the data by (period by cohort) groups before calculating
marginal effects? This trades off a loss in estimate accuracy (typically around
the 1st or 2nd significant decimal point) for a substantial improvement in estima-
tion time for large datasets. The default behaviour ("auto") is to automatically
collapse if the original dataset has more than 500,000 rows. Users can override
by setting either FALSE or TRUE. Note that collapsing by group is only valid
if the preceding etwfe call was run with "ivar = NULL" (the default). See the
section on Performance tips below.

post_only Logical. Drop pre-treatment ATTs? Only evaluated if (a) type = "event" and
(b) the original etwfe model object was estimated using the default "notyet"
treated control group. If conditions (a) and (b) are met then the pre-treatment
effects will be zero as a mechanical result of ETWFE’s estimation setup. The de-
fault behaviour (FALSE) is thus to drop these nuisance rows from the dataset. The
post_only argument recognises that you may still want to keep them for pre-
sentation purposes (e.g., plotting an event-study). Nevertheless, be forewarned
that enabling that behaviour via TRUE is strictly performative: the "zero" treat-
ment effects for any pre-treatment periods is purely an artefact of the estimation
setup.

emfx 3

... Additional arguments passed to marginaleffects::slopes. For example, you
can pass vcov = FALSE to dramatically speed up estimation times of the main
marginal effects (but at the cost of not getting any information about standard
errors; see Performance tips below). Another potentially useful application is
testing whether heterogeneous treatment effects (i.e. the levels of any xvar co-
variate) are equal by invoking the hypothesis argument, e.g. hypothesis =
"b1 = b2".

Value

A slopes object from the marginaleffects package.

Performance tips

Under most situations, etwfe should complete very quickly. For its part, emfx is quite performant
too and should take a few seconds or less for datasets under 100k rows. However, emfx’s compu-
tation time does tend to scale non-linearly with the size of the original data, as well as the number
of interactions from the underlying etwfe model. Without getting too deep into the weeds, the nu-
merical delta method used to recover the ATEs of interest has to estimate two prediction models for
each coefficient in the model and then compute their standard errors. So, it’s a potentially expensive
operation that can push the computation time for large datasets (> 1m rows) up to several minutes
or longer.

Fortunately, there are two complementary strategies that you can use to speed things up. The first is
to turn off the most expensive part of the whole procedure—standard error calculation—by calling
emfx(..., vcov = FALSE). Doing so should bring the estimation time back down to a few seconds
or less, even for datasets in excess of a million rows. While the loss of standard errors might not
be an acceptable trade-off for projects where statistical inference is critical, the good news is this
first strategy can still be combined our second strategy. It turns out that collapsing the data by
groups prior to estimating the marginal effects can yield substantial speed gains of its own. Users
can do this by invoking the emfx(..., collapse = TRUE) argument. While the effect here is not
as dramatic as the first strategy, our second strategy does have the virtue of retaining information
about the standard errors. The trade-off this time, however, is that collapsing our data does lead to
a loss in accuracy for our estimated parameters. On the other hand, testing suggests that this loss in
accuracy tends to be relatively minor, with results equivalent up to the 1st or 2nd significant decimal
place (or even better).

Summarizing, here’s a quick plan of attack for you to try if you are worried about the estimation
time for large datasets and models:

1. Estimate mod = etwfe(...) as per usual.
2. Run emfx(mod, vcov = FALSE, ...).
3. Run emfx(mod, vcov = FALSE, collapse = TRUE, ...).
4. Compare the point estimates from steps 1 and 2. If they are are similar enough to your satis-

faction, get the approximate standard errors by running emfx(mod, collapse = TRUE, ...).

Heterogeneous treatment effects

Specifying etwfe(..., xvar = <xvar>) will generate interaction effects for all levels of <xvar>
as part of the main regression model. The reason that this is useful (as opposed to a regular, non-
interacted covariate in the formula RHS) is that it allows us to estimate heterogeneous treatment

4 emfx

effects as part of the larger ETWFE framework. Specifically, we can recover heterogeneous treat-
ment effects for each level of <xvar> by passing the resulting etwfe model object on to emfx().

For example, imagine that we have a categorical variable called "age" in our dataset, with two
distinct levels "adult" and "child". Running emfx(etwfe(..., xvar = age)) will tell us how the
efficacy of treatment varies across adults and children. We can then also leverage the in-built hy-
pothesis testing infrastructure of marginaleffects to test whether the treatment effect is statisti-
cally different across these two age groups; see Examples below. Note the same principles carry
over to categorical variables with multiple levels, or even continuous variables (although continuous
variables are not as well supported yet).

See Also

marginaleffects::slopes()

Examples

Not run:
We’ll use the mpdta dataset from the did package (which you’ll need to
install separately).

install.packages("did")
data("mpdta", package = "did")

#
Basic example
#

The basic ETWFE workflow involves two steps:

1) Estimate the main regression model with etwfe().

mod = etwfe(
fml = lemp ~ lpop, # outcome ~ controls (use 0 or 1 if none)
tvar = year, # time variable
gvar = first.treat, # group variable
data = mpdta, # dataset
vcov = ~countyreal # vcov adjustment (here: clustered by county)
)

mod ## A fixest model object with fully saturated interaction effects.

2) Recover the treatment effects of interest with emfx().

emfx(mod, type = "event") # dynamic ATE a la an event study

Etc. Other aggregation type options are "simple" (the default), "group"
and "calendar"

#
Heterogeneous treatment effects
#

etwfe 5

Example where we estimate heterogeneous treatment effects for counties
within the 8 US Great Lake states (versus all other counties).

gls = c("IL" = 17, "IN" = 18, "MI" = 26, "MN" = 27,
"NY" = 36, "OH" = 39, "PA" = 42, "WI" = 55)

mpdta$gls = substr(mpdta$countyreal, 1, 2) %in% gls

hmod = etwfe(
lemp ~ lpop, tvar = year, gvar = first.treat, data = mpdta,
vcov = ~countyreal,
xvar = gls ## <= het. TEs by gls
)

Heterogeneous ATEs (could also specify "event", etc.)

emfx(hmod)

To test whether the ATEs across these two groups (non-GLS vs GLS) are
statistically different, simply pass an appropriate "hypothesis" argument.

emfx(hmod, hypothesis = "b1 = b2")

#
Nonlinear model (distribution / link) families
#

Poisson example

mpdta$emp = exp(mpdta$lemp)

etwfe(
emp ~ lpop, tvar = year, gvar = first.treat, data = mpdta,
vcov = ~countyreal,
family = "poisson" ## <= family arg for nonlinear options
) |>
emfx("event")

End(Not run)

etwfe Extended two-way fixed effects

Description

Extended two-way fixed effects

6 etwfe

Usage

etwfe(
fml = NULL,
tvar = NULL,
gvar = NULL,
data = NULL,
ivar = NULL,
xvar = NULL,
tref = NULL,
gref = NULL,
cgroup = c("notyet", "never"),
fe = c("vs", "feo", "none"),
family = NULL,
...

)

Arguments

fml A two-side formula representing the outcome (lhs) and any control variables
(rhs), e.g. y ~ x1 + x2. If no controls are required, the rhs must take the value of
0 or 1, e.g. y ~ 0.

tvar Time variable. Can be a string (e.g., "year") or an expression (e.g., year).

gvar Group variable. Can be either a string (e.g., "first_treated") or an expression
(e.g., first_treated). In a staggered treatment setting, the group variable typically
denotes treatment cohort.

data The data frame that you want to run ETWFE on.

ivar Optional index variable. Can be a string (e.g., "country") or an expression (e.g.,
country). Leaving as NULL (the default) will result in group-level fixed effects
being used, which is more efficient and necessary for nonlinear models (see
family argument below). However, you may still want to cluster your standard
errors by your index variable through the vcov argument. See Examples below.

xvar Optional interacted categorical covariate for estimating heterogeneous treatment
effects. Enables recovery of the marginal treatment effect for distinct levels of
xvar, e.g. "child", "teenager", or "adult". Note that the "x" prefix in "xvar"
represents a covariate that is interacted with treatment, as opposed to a regular
control variable.

tref Optional reference value for tvar. Defaults to its minimum value (i.e., the first
time period observed in the dataset).

gref Optional reference value for gvar. You shouldn’t need to provide this if your
gvar variable is well specified. But providing an explicit reference value can be
useful/necessary if the desired control group takes an unusual value.

cgroup What control group do you wish to use for estimating treatment effects. Either
"notyet" treated (the default) or "never" treated.

fe What level of fixed effects should be used? Defaults to "vs" (varying slopes),
which is the most efficient in terms of estimation and terseness of the return

etwfe 7

model object. The other two options, "feo" (fixed effects only) and "none" (no
fixed effects whatsoever), trade off efficiency for additional information on other
(nuisance) model parameters. Note that the primary treatment parameters of
interest should remain unchanged regardless of choice.

family Which family to use for the estimation. Defaults to NULL, in which case
fixest::feols is used. Otherwise passed to fixest::feglm, so that valid en-
tries include "logit", "poisson", and "negbin". Note that if a non-NULL family
entry is detected, ivar will automatically be set to NULL.

... Additional arguments passed to fixest::feols (or fixest::feglm). The most
common example would be a vcov argument.

Value

A fixest object with fully saturated interaction effects.

Heterogeneous treatment effects

Specifying etwfe(..., xvar = <xvar>) will generate interaction effects for all levels of <xvar>
as part of the main regression model. The reason that this is useful (as opposed to a regular, non-
interacted covariate in the formula RHS) is that it allows us to estimate heterogeneous treatment
effects as part of the larger ETWFE framework. Specifically, we can recover heterogeneous treat-
ment effects for each level of <xvar> by passing the resulting etwfe model object on to emfx().

For example, imagine that we have a categorical variable called "age" in our dataset, with two
distinct levels "adult" and "child". Running emfx(etwfe(..., xvar = age)) will tell us how the
efficacy of treatment varies across adults and children. We can then also leverage the in-built hy-
pothesis testing infrastructure of marginaleffects to test whether the treatment effect is statisti-
cally different across these two age groups; see Examples below. Note the same principles carry
over to categorical variables with multiple levels, or even continuous variables (although continuous
variables are not as well supported yet).

Performance tips

Under most situations, etwfe should complete very quickly. For its part, emfx is quite performant
too and should take a few seconds or less for datasets under 100k rows. However, emfx’s compu-
tation time does tend to scale non-linearly with the size of the original data, as well as the number
of interactions from the underlying etwfe model. Without getting too deep into the weeds, the nu-
merical delta method used to recover the ATEs of interest has to estimate two prediction models for
each coefficient in the model and then compute their standard errors. So, it’s a potentially expensive
operation that can push the computation time for large datasets (> 1m rows) up to several minutes
or longer.

Fortunately, there are two complementary strategies that you can use to speed things up. The first is
to turn off the most expensive part of the whole procedure—standard error calculation—by calling
emfx(..., vcov = FALSE). Doing so should bring the estimation time back down to a few seconds
or less, even for datasets in excess of a million rows. While the loss of standard errors might not
be an acceptable trade-off for projects where statistical inference is critical, the good news is this
first strategy can still be combined our second strategy. It turns out that collapsing the data by
groups prior to estimating the marginal effects can yield substantial speed gains of its own. Users
can do this by invoking the emfx(..., collapse = TRUE) argument. While the effect here is not

8 etwfe

as dramatic as the first strategy, our second strategy does have the virtue of retaining information
about the standard errors. The trade-off this time, however, is that collapsing our data does lead to
a loss in accuracy for our estimated parameters. On the other hand, testing suggests that this loss in
accuracy tends to be relatively minor, with results equivalent up to the 1st or 2nd significant decimal
place (or even better).

Summarizing, here’s a quick plan of attack for you to try if you are worried about the estimation
time for large datasets and models:

1. Estimate mod = etwfe(...) as per usual.

2. Run emfx(mod, vcov = FALSE, ...).

3. Run emfx(mod, vcov = FALSE, collapse = TRUE, ...).

4. Compare the point estimates from steps 1 and 2. If they are are similar enough to your satis-
faction, get the approximate standard errors by running emfx(mod, collapse = TRUE, ...).

References

Wooldridge, Jeffrey M. (2021). Two-Way Fixed Effects, the Two-Way Mundlak Regression, and
Difference-in-Differences Estimators. Working paper (version: August 16, 2021). Available:
http://dx.doi.org/10.2139/ssrn.3906345

Wooldridge, Jeffrey M. (2022). Simple Approaches to Nonlinear Difference-in-Differences with
Panel Data. The Econometrics Journal (forthcoming). Available: http://dx.doi.org/10.2139/ssrn.4183726

See Also

fixest::feols(), fixest::feglm()

Examples

Not run:
We’ll use the mpdta dataset from the did package (which you’ll need to
install separately).

install.packages("did")
data("mpdta", package = "did")

#
Basic example
#

The basic ETWFE workflow involves two steps:

1) Estimate the main regression model with etwfe().

mod = etwfe(
fml = lemp ~ lpop, # outcome ~ controls (use 0 or 1 if none)
tvar = year, # time variable
gvar = first.treat, # group variable
data = mpdta, # dataset
vcov = ~countyreal # vcov adjustment (here: clustered by county)
)

etwfe 9

mod ## A fixest model object with fully saturated interaction effects.

2) Recover the treatment effects of interest with emfx().

emfx(mod, type = "event") # dynamic ATE a la an event study

Etc. Other aggregation type options are "simple" (the default), "group"
and "calendar"

#
Heterogeneous treatment effects
#

Example where we estimate heterogeneous treatment effects for counties
within the 8 US Great Lake states (versus all other counties).

gls = c("IL" = 17, "IN" = 18, "MI" = 26, "MN" = 27,
"NY" = 36, "OH" = 39, "PA" = 42, "WI" = 55)

mpdta$gls = substr(mpdta$countyreal, 1, 2) %in% gls

hmod = etwfe(
lemp ~ lpop, tvar = year, gvar = first.treat, data = mpdta,
vcov = ~countyreal,
xvar = gls ## <= het. TEs by gls
)

Heterogeneous ATEs (could also specify "event", etc.)

emfx(hmod)

To test whether the ATEs across these two groups (non-GLS vs GLS) are
statistically different, simply pass an appropriate "hypothesis" argument.

emfx(hmod, hypothesis = "b1 = b2")

#
Nonlinear model (distribution / link) families
#

Poisson example

mpdta$emp = exp(mpdta$lemp)

etwfe(
emp ~ lpop, tvar = year, gvar = first.treat, data = mpdta,
vcov = ~countyreal,
family = "poisson" ## <= family arg for nonlinear options
) |>
emfx("event")

10 etwfe

End(Not run)

Index

emfx, 2
etwfe, 5

family, 7
fixest::feglm, 7
fixest::feglm(), 8
fixest::feols, 7
fixest::feols(), 8

marginaleffects::slopes, 3
marginaleffects::slopes(), 4

11

	emfx
	etwfe
	Index

